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Abstract. In this paper, we consider a multivariate aggregate claims model that includes different 
types of claims from which some could simultaneously affect an insurance portfolio. For this model, 
we present a recursive formula to evaluate its probability function when the number of claims follows 
a multivariate Poisson distribution. A possible extension is also suggested. 
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1. INTRODUCTION 

Modelling aggregate claims is a very important task for an insurance company due to their applications 
in premiums calculations, reserves evaluation, reinsurance covers study etc. Therefore, there is an increasing 
amount of literature related to this topic, see, e.g., the book [1] and the references therein, or, more recently, 
the paper [2], which proposes a new distribution family for modelling insurance data (based on generalizing 
the exponential-Poisson distribution), or the work [3], in which the problem of existence of the restricted 
optimal retention in a stop-loss reinsurance is studied and the results are applied in the case of generalized 
Pareto distributed aggregate claims. 

The main models for aggregate claims are the individual and collective ones. In this paper, we deal 
with the collective model in a multivariate setting motivated by the fact that some stochastic sources (like, 
e.g., fires, floods, traffic accidents, earthquakes) may cause different types of dependent claims. Therefore, 
we consider the following multivariate aggregate claims model 
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where 2≥m  is the number of different types of claims affecting the portfolio, kS  denotes the aggregate 
claims of type k, kN  the number of claims of only type k, 0N  the number of common claims (e.g., accidents 
that causes all m types of different claims). Each set of claim sizes ( ) 1jl l

U
≥

 are positive, independent and 
identically distributed (i.i.d.) as the generic random variable (r.v.) Uj, 1 j m≤ ≤ , independent of the claim 
numbers and of the other claim sizes, including ( )1 ,...,k mkL L . The random vectors ( )1 1

,...,k mk k
L L

≥
are non-

negative i.i.d. as the generic ( )1,..., mL L , and independent of the claim numbers. Clearly, 0 0 0,j jU L j= = ∀ . 
In the following, by a bold faced letter we denote a vector, i.e., X = ( )1,..., mX X  or ( )1,..., mx x=x . We 

shall work with discrete r.v.'s (if the claim sizes distributions are continuous, they should be discretized 
using, e.g., the rounding method, see [1]). If f is a probability function (p.f.), we denote by nf *  its n-fold 
convolution corresponding to the distribution of the sum of n i.i.d. r.v.’s having p.f. f; note that *1f f=  and, 
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⎩
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xf . Let Sf  denote the p.f. of S, jf  the p.f. of Uj, 1 ,j m≤ ≤  0f  the p.f. of L, 

and p the p.f. of ( )0N ,..., mN N= . Then, from (1), we easily obtain 



 Elena-Graţiela ROBE-VOINEA, Raluca VERNIC 2 4 

 ( ) ( ) ( ) ( )0

0

x
* *

S 0 0
0,..., 0 k 0 1

x ,..., , 0j

m

m
n n

m j j
n n j

f p n n f k f
≥ ≥ = =

= − ≥∑ ∑∏ x k x , (2) 

where ( )0,...,0=0 , while the inequality 0x ≥  and the difference kx −  are componentwise. Note that due 
to the convolutions in (2), Sf  could be difficult to evaluate and time-consuming; therefore, alternative 
methods have been developed, from which recursions play an important role in actuarial mathematics (for 
details on alternative methods see [1], while for details on recursions see [4]).  

We recall the fact that the distribution of N is also called counting distribution, while the distribution of 
S is called compound. 

In this paper, in next section, we shall present a recursion to evaluate Sf  for model (1) when the 
number of claims N follows a multivariate Poisson distribution. In the bivariate setting, when m = 2, a 
recursion for this case has been recently presented in [5]; our recursion extends this one to a general m. In the 
simpler univariate case (m = 1), the history of recursions involving Poisson counting distributions starts in 
insurance with [6] and [7], and continues with more complex recursions for compound mixed Poisson 
distributions discussed in [8, 9] among others, or, in the multivariate case, in [10], etc. 

2. MAIN RESULT 

2.1. Probability generating function 

Let us denote the p.f. of a discrete random vector X by Xf  and its probability generating function 
(p.g.f.) by Xg ; we recall that 
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Moreover, as a property of the p.g.f., it holds that 
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and clearly, ( ) ( )00 XX fg = . In particular, if ( )mNN ,..., 0=N  follows the multivariate Poisson distribution 
( )mmMPo λλλ ,...,, 01+  with jj ∀>> ,0,0 λλ , then, from [11] we have that 
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The following result holds. 
PROPOSITION 2.1. Under the assumptions of model (1), the p.g.f. of S is given by 
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which immediately yields formula (5) and completes the proof. 
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2.2. The recursion 

We shall now obtain a recursion for the p.f. Sf  for model (1) when N follows a multivariate Poisson 
distribution.  

PROPOSITION 2.2. Under the assumptions of model (1), if N follows the multivariate Poisson 
distribution ( )mmMPo λλλ ,...,, 01+ , then the p.f. of S satisfies the recursion 
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Proof. We start by inserting the p.g.f. (4) of N into (5) and obtain 
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Taking here t = 0 and using the properties of the p.g.f., we easily get the starting value (7).  
To obtain the recursion, we recall from (3) that  

,)()(,)()(,)()(
1 01

0∑ ∏ ∑ ∑∏
≥ = ≥

∞

==

===
0x 0x

LSS xtxt
m

l x

x
kk

m

l
kU

x
l

x
l txftgtfgtfg

k

ll  

which yields 

.)()(',)()(,)()(
0

1

1

1
0

1

1 ∑∑ ∑ ∏∏
∞

=

−

≥ ≥
≠
=

−

≠
=

− ==
∂

∂
=

∂
∂

x

x
kkkU

m

kl
l

x
l

x
kk

k

m

kl
l

x
l

x
kk

k

xtxftgttxf
t

gttxf
t

g
k

lklk

0x 0x

L
S

S xtxt
 (8)

We now consider the partial derivative of Sg  with respect to mktk ≤≤1,  i.e., 
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Inserting here the formulas (8) leads to 
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where 
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We separately evaluate each term of (9). We start with 
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where we change the variable ,kkkkkk zxyzyx −=⇒+=  we interchange the sums and obtain 
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Similarly, changing variables jzyx jjj ∀+= , , and interchanging the sums, yields 
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Also, 
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from where 
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from where, if 1≥kx , we easily obtain formula (6). 
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Particular case. To see how the recursion presented in Proposition 2.2 works, we illustrate it on the 
particular case m = 3. The evaluation of Sf  starts with formula (7), which gives )0,0,0(Sf ; using then (6), 
we calculate )0,0,1(Sf  by taking k = 1, )0,1,0(Sf  by taking k = 2 and )1,0,0(Sf  by taking k = 3. For 
example, we shall use 

( )[ ] ),0,0,0()0,0,0()0()0()1()0,0,1()0()0()0()0,0,1()1()0,0,1( 032103210011 SS ffffffffffff +++= λλλ  
etc. Next step consists of calculating ),0,1,1(Sf )1,0,1(Sf , )1,1,0(Sf  followed by the evaluation of )1,1,1(Sf , 
and so on. 

Remark. If, in particular, we take m = 2, formula (6) reduces to the particular formulas obtained by Jin 
and Ren in [5] for their model B with the trivariate Poisson as counting distribution. Moreover, using a 
similar reasoning as in the above proof, the recursion from Proposition 2.2 can be extended after some 
tedious calculation to a more general (than the multivariate Poisson) counting distribution, built like the one 
in the general model B of [5] (which is in fact our model (1) for m = 2); more precisely, the counting 
distribution results by taking ,0, mjZZN jj ≤≤+=  with independent jZ ’s, also independent of Z, all of 
them (Z included) being distributed in the so-called Panjer class, which consists of the Poisson, binomial and 
negative binomial distributions (for more details on the Panjer class of distributions see [4]). In conclusion, 
Theorem 2.2 in [5] can be extended from the bivariate case considered in that work to 3≥m . 
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