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Abstract. We consider a second order equation of Duffing type. By applying Mawhin’s continuation 
theorem and a relationship between the periodic and the Dirichlet boundary value problems for 
second order ordinary differential equations, we prove that the given equation has at least one positive 
periodic solution when the singular forces exhibits certain some strong force condition near the origin 
and with some semilinear growth near infinity. Recent results in the literature are generalized and 
complemented. 
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1. INTRODUCTION 

This paper is devoted to the existence of positive T-periodic solutions for the Duffing-type equation 

( , ) 0,x C x g t x′′ ′+ + =  (1.1)

where C R∈  is a constant, ( (0, ), )g C R R∈ × +∞  is T-periodic with the first variable, and exhibits a 
repulsive singularity at 0.x =  Following the notion in [6], we say that (1.1) has a repulsive singularity at 

0x =  if 
0

lim ( , )
x

g t x
+→

= −∞  uniformly in t R∈ , whereas (1.1) has an attractive singularity at 0x =  if 

 
0

lim ( , )
x

g t x
+→

= +∞ uniformly in .t R∈  

As is well known that the Duffing equation named after the German electrical engineer Georg Duffing 
in 1918, has been widely used in physics, economics, engineering, and many other physical phenomena. An 
important question is whether this equation can support periodic solutions. Hence, it has been extensively 
investigated by numerous researchers in recent years. See for example [10, 13, 14, 19] and the references 
therein. According to the growth speed of g, (1.1) can be classified into the following three cases, 

1( )S Superlinear case: ( , ) /g t s s →+∞ , as s →+∞ ; 2( )S Superlinear case: 0 ( , ) /k g t s s K< ≤ ≤ < +∞ , 

as s →+∞ ; 3( )S Superlinear case: ( , ) / 0g t s s → , as s →+∞ . 
When C = 0, Eq. (1.1) becomes 

( , ) 0x g t x′′ + =   ;  0x >  (1.2)

we recall the following results. Let ( , ) ( ) ( )g t x g x e t= − , where ( , )g C R R+∈  and ( , )e C R R∈  is T-
periodic satisfies the following strong force condition at 0x = , 

0
lim ( )
x

g x
+→

= −∞  and  
10

lim ( )d
x

x
g s s

+→
= +∞∫  



2 Periodic solutions of damped Duffing-type equations with singularity  9

with g  is superlinear at x →+∞ , 
( )lim

x

g x
x→+∞

= +∞ , Fonda, Manásevich, and Zanolin [5] used the Poincaré -

Birkhoff theorem to obtain the existence of positive periodic solutions, including all subharmonics. 
Similarity, when ( , )g t x  is superlinear at +x → ∞  and satisfies the following strong force condition at 

0x = : there are positive constants , ,c c υ′  such that 1υ ≥  and  

( , )cx g t x c xυ υ− −′≤ − ≤  (1.3)

for all t  and all x  sufficiently small, del Pino and Manásevich proved in [2] the existence of infinitely many 
periodic solutions to (1.2) .    

When ( , )g t x  is semilinear at x →+∞ , del Pino, Manásevich, and Montero [3] proved the existence 
of at least one positive T-periodic solution of (1.2) if ( , )g t x  satisfies (1.3) near 0,x = and the following 
nonresonance conditions at x = +∞ : there is an integer 0k ≥  and a small constant 0ε >  such that 

2 2( , ) ( 1)k g t x k
T x T
π πε ε+⎛ ⎞ ⎛ ⎞+ ≤ ≤ −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (1.4)

for all t  and all 1x� . 
The generalization of [3] was done for equation of the type of ( ) ( )x g x e t′′ + =  in [14]. Assume that 

( )g x  satisfies 

0
lim ( )
x

g x
+→

= −∞ , and 
0

lim ( ) +
x

G x
+→

= ∞ ,    (
1

( ) ( )d
x

G x g s s= ∫ ) 

and 
2 2( ) ( 1)+k g x k

T x T
π πε ε+⎛ ⎞ ⎛ ⎞≤ ≤ −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
, (1.5)

for all t  and all 1x� . Wang [14] used the phase-plane analysis methods proved that Eq.(1.1) has at least 
one positive T-periodic solution. 

We note that conditions (1.4) and (1.5) are the standard uniform nonresonance conditions with respect 
to the Dirichlet boundary condition, not with respect to the periodic boundary condition. For example, 

3 ( ),x x x h tλ −′′ + = + where 0λ >  and ( , )h C R R∈  is 2π-periodic. Nonresonance holds when 2( 2)kλ ≠ , 
1, 2, ,k = … i.e., λ  is not an eigenvalue of the Dirichlet problem. 

Some classical tools have been used in the literature to study singular equations. These classical tools 
include the degree theory [7, 15, 18], the method of upper and lower solutions [12], Schauder’s fixed point 
theorem [1], some fixed point theorems in cones for completely continuous operators [8, 16, 17]. It seems the 
periodic boundary value problem for singular differential equations is closely related to the Dirichlet 
boundary value problem. A relationship between periodic and Dirichlet boundary value problems for second-
order differential equations with singularities is establish in [21]. As mentioned above, this paper is mainly 
motivated by the recent papers [3, 14]. The result is obtained using Mawhin’s continuation theorem and such 
a relationship between the periodic boundary value problem and the Dirichlet boundary value problem, 
thanks to a priori estimates on the solutions of a suitable family of problems. Compared with [3,14], the main 
novelty in the paper is represented by the conditions at infinity, which remind of a situation between the first 
and the second eigenvalue, but are more general.  
Now we present our main result. 

THEOREM 1.1. Let the following assumptions hold. 
( 1H ) There exist a constant 0 0R >  and a function 0 ((0, ), )g C R∈ ∞  such that 0( , ) ( )g t x g x≤ − for 

all t  and all 00 x R< ≤ , where 0g  satisfies the strong force condition, i.e. 

 
+ 0

0
lim ( )
x

g x
→

= +∞    and   
+ 010

lim ( )d
x

x
g s s

→
= −∞∫ . 
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( 2H ) There exist T-periodic continuous functions a, b such that  

( , ) ( , )( ) lim inf lim sup ( )
x x

g t x g t xa t b t
x x→+∞ →+∞

≤ ≤ ≤  (1.6)

uniformly in [0, ]t T∈ . Moreover,  

0a >  and 1( ) 0bλ >  (1.7)

here 
0

1 ( )d
T

a a t t
T

= ∫  and 1{ ( )}qλ  denotes the first anti-periodic eigenvalues of  

( ( )) 0x q t xλ′′ + + =  (1.8)

subject to the anti-periodic boundary conditions. 
Then Eq. (1.1) has at least one positive T-periodic solution.  
Note that when 0q ≡  and 0(0) = 0λ  and (0) (0) /k k k Tλ λ π= = for all k N∈ . These eigenvalues 

coincide with the constants in conditions (1.4) and (1.5). The rest of this paper is organized as follows. In 
Section 2, some preliminary results will be given. In Section 3, by the use of Mawhin’s continuation 
theorem, we will prove the main results.  

2. PRELIMINARIES  

Let us first introduce some known results on eigenvalues. Let ( )q t  be a T-periodic potential such that 
1( )q L R∈ . Consider the eigenvalue problems of (1.8) subject to the T-periodic boundary condition 

(0) ( ) (0) ( ) 0x x T x x T′ ′− = − =  (2.1)

or to the anti-T-periodic boundary condition  

(0) ( ) (0) ( ) 0.x x T x x T′ ′+ = + =  (2.2)

Denote by 1 2( ) ( ) ( )D D D
nq q qλ λ λ< < < <" "all eigenvalues of (1.8) with the Dirichlet boundary 

condition 

(0) ( ) 0.x x T= =  (2.3)

The following are the standard results for eigenvalues. See, e.g Reference [9, 23]. A partial generalization of 
these results to the one-dimensional p-Laplacian with potentials is given in Reference [22]. 

LEMMA 2.1. There exist two sequences { ( ) : }n q n Nλ ∈  and { ( ) : }n q n Zλ +∈ such that: 
 ( 1E ) [9, Theorem 2.1, see also 22, Theorem A]). λ  is an eigenvalue of (1.8–2.1) (or (1.8–2.2)) if 

and only if ( )n qλ λ=  for some even (or odd) integer n; 
 ( 2E ) [9, Theorem 2.1, see also 22, Theorem A]).  

 0 1 1 2 2( ) ( ) ( ) ( ) ( )q q q q qλ λ λ λ λ−∞ < < ≤ < ≤ <" ( ) ( )n nq qλ λ< ≤ <"  and ( )n qλ → +∞ , 

 ( )n q →λ  +∞ as n →+∞ ; 
 ( 3E ) [22, Remark 4.3]. The comparison results hold for all of these eigenvalues. If 1 2q q≤  

 then 1 2( ) ( )n nq qλ λ≥ , 1 2( ) ( )n nq qλ λ≥ , 1 2( ) ( )D D
n nq qλ λ≥ for any 1n ≥ ; 

 ( 4E ) [22, Theorem 4.3]. For any 1n ≥ , 

 
0 0( ) min{ ( ) : }D

n n tq q t Rλ λ= ∈ , 
0 0{ } max{ ( ) : }D

n n tq q t Rλ λ= ∈ , 
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where 
0
( )tq t  denotes the translation of 

0 0( ) : ( ) ( )tq t q t q t t≡ + ;  

 ( 5E ) [23, Theorem 5.2]. ( )n qλ , ( )n qλ , and ( )D
n qλ  continuous in q  in the L1-topology of 1(0, );L T  

 ( 6E ) (Variational characterization). The first eigenvalue 1
Dλ  can be found as  

( )1
0

2 2

0
1 20,

0 0

( ( ) ( ) ( ))d
( ) inf

( )d

T

D
Tx H T

x

x t q t x t t
q

x t t
λ

∈
≠

′ −
= ∫

∫
. 

In particular, 1 ( )D q qλ ≤ − , where q  is the mean value. 
As we know, continuation theorems play an important role in studying the existence of periodic 

solutions of the second order differential equations. We now introduce theorem given by Mawhin [11]. 
Definition 2.1. Let : dom L X L Z⊃ →  be a linear operator, and ,X Z  be real Banach space. L  is said 

to be a Fredholm operator of index zero provided that 
 (i) Im L  is a closed subset of Z , 
 (ii) dim Ker codim ImL L= < +∞ . 

Set 1KerX L X= ⊕ , 0 ImZ Z L= ⊕ . We will also need the projector : Ker P X L→  and 0:Q Z Z→  

are continuous such that Im KerP L= , Ker ImQ L= .Then it follows that 
dom \Ker

: dom \ Ker Im
L P

L L P L→  

is invertible. We denote the inverse of that map by pK  and ( )PQ PK K I Q= − , and suppose that Ω  is an open 

bounded subset of X  such that dom 0L Ω ≠∩ .  
Definition 2.2. Let : domL X L Z⊃ →  be a Fredholm operator of index zero, :N ZΩ→  be a 

continuous operator. N  is said to be L-compact in Ω  if the map :QN ZΩ→  and :PQK N XΩ→  are 
compact. 

LEMMA 2.2. [11, Theorem 2.4]. Let L  be a Fredholm operator of index zero and let N be L -compact on 
Ω . Assume that the following conditions are satisfied: 

 (i) 0,Lx Nxτ+ ≠ for each ( , ) [(dom \ Ker ) ] (0,1)x L Lτ ∈ ∂Ω ×∩ ; 
 (ii) ImNx L∉  for each Kerx L∈ ∂Ω∩ ; 
 (iii) 0 Ker( | , Ker ) 0LD QN LΩ ≠∩ , where :Q Z Z→  is a continuous projector such that  
  Ker ImQ L=  and 0D  is the Brouwer degree.  

Then the equation + 0Lx Nx =  has at least one solution in domL Ω∩ .  
We refer the reader to [20] for more details about degree theory. 

3. PROOF OF THEOREM 1.1 

We will apply Lemma 2.2 to the singular problem (1.1). Let ={ :X x R R→  is 1C and satisfies 
( ) ( )}x t T x t+ = , endowed with the 1C -norm, cleary, X  is a Banach space, and let 1(0, ; )Z L T R=  with the 
1L -norm. Let dom { :L x X x′= ∈ is absolutely continuous on }R  and : domL L Z→  be the operator 

defined by ( )( ) ( )Lx t x t′′= , and :N X Z→  by ( )( ) ( ) ( , ( ))Nx t Cx t g t x t′= + . Then (1.1) is equivalent to the 
operator equation + 0Lx Nx = . Define projectors :P X X→  and :Q Z Z→  by 

0

1 ( )d
T

Px x s s
T

= ∫   ;  
0

1 ( )d .
T

Qz z s s
T

= ∫  (3.1)

It is easy to see that KerL R= , 
0

Im { : ( )d 0}
T

L z Z z t t= ∈ =∫ , Ker ImQ L= , Im KerP L= , and then L  is 

a Fredholm linear mapping with zero index. 
Let K  denote the inverse of Ker dom| P LL ∩ . Then we have  
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[ ]
0

( ) ( , ) ( )d ,
T

Kz t G t s z s s= ∫  (3.2)

where ( , )G t s is the Green function .  
Now we consider the following ( homotopy ) family of (1.1) 

( ) ( ( ) ( , ( ))) 0x t Cx t g t x tτ′′ ′+ + =   ,  (0,1]τ ∈  (3.3)

i.e. the operator equation 0Lx Nxτ+ = .  
LEMMA 3.1. Under the assumptions as in Theorem 1.1, there exist 1 0 0B B> >  such that for any 

positive solution ( )x t  to (3.3–2.2), there exists some to 0 [0, ]t T∈  such that 

0 0 1( )B x t B< < . (3.4)

Proof . Let ( )x t  be a positive solution of (3.3)–(2.2). By condition ( 1H ), there is 0 0B >  such that 
( , ) 0g t s <  for all 00 s B< < . Integrating (3.3) from 0 to T , we get 

0 0 0
( , ( ))d ( )d d 0

T T T
g t x t t x t t C x tτ τ′′ ′= − − =∫ ∫ ∫ . 

Thus 
0

( , ( ))d 0
T

g t x t t =∫ , there exist [0, ]t T∗ ∈  such that 0( )x t B∗ > . 

Next, noticing (1.7), we take some constant 0 1(0,min{ , ( )})a bε λ∈ . By condition ( 2H ) there is 

1 0( )B B>  large enough such that 

0 0
( , )( ) ( )+g t sa t b t
s

ε ε− ≤ ≤  (3.5)

for all t  and 1s B≥ . We assert that 1( )x t B∗ <  for some t∗ . Once this is proved, combining with the fact 

0( )x t B∗ > , we know that (3.4) is necessarily satisfied for some 0t . 
Now we prove the assertion by contradiction. Assume that 1( )x t B≥  for all t. Define 

( , ( ))( ) :
( )

g t x tp t
x t

= . By (3.5), 0 0( ) ( ) ( )a t p t b tε ε− ≤ ≤ + , for all t. Moreover, ( )x t  satisfies the following 

differential equation ( ( ) ) 0x Cx p t xτ′′ ′+ + = .Write x x x= +� , where 
0

1 ( )d
T

x x t t
T

= ∫ , then ( ) ( )x t x t′ ′=�  

and x�  satisfies 

( ( ) ( ) ).x Cx p t x p t x′′ ′− − = +� � �τ τ  (3.6)

Integrating the equation (3.6) from 0 to T , we have 

0 0
( ) ( )d ( )d

T T
p t x t t x p t t= −∫ ∫� . (3.7)

Multiplying (3.6) by x�  and integrate , using the fact that 
0

( ) ( )d 0
T

x t x t t′ =∫ � � , we get 

2 2
2 0 0

( ) ( )d + ( ) ( )d
T T

x p t x t t x p t x t tτ τ′ = ∫ ∫� � � 2 2

0 0
( ) ( )d ( ) ( )d

T T
p t x t t x t p t t= − ≤∫ ∫�τ τ

 

                       
2

0
( ) ( )d

T
p t x t tτ≤ ∫ �   2

0
( ) ( )d ,

T
p t x t t≤ ∫ �                                     

 

(3.8)

where (3.7) is used and the last inequality follows from the fact that 00
( )d ( ) 0

T
p t t T a ε> − >∫ .  
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Note that 0( ) 0x t =�  for some 0t , 0( ) 0x t T+ =� , so 1
0 0 0( ) ( , )x t H t t T∈ +� . We assert that 0x ≡� . On 

the contrary , assume that 0x ≠� . Now by (3.8), the first Dirichlet eigenvalue 

0

0

10 0 0
0 0 0

0

+ 2 2

1 [ , ] + 2( , + )
0

( ( ) ( ) ( ))d
( | ) inf 0.

( )d

t T

tD
t t T t TH t t T

t

t p t t t
p

t tϕ
ϕ

ϕ ϕ
λ

ϕ
+

∈
≠

′ −
= ≤

∫
∫

 

So, we conclude that 1 1( ) min{ ( )} 0Dp pλ λ= ≤ . However, from 0( ) ( )p t b t ε< + , we have 

1( )pλ ≥  1 0 1 0( ) ( ) 0b bλ ε λ ε+ = − > by the choice of 0ε .  
We have a contradiction, which shows that 0x =� , thus x x= . Now it follows from (3.7) that 0x =  

and 0x ≡ . This contradicts with the fact that x  is a positive solution. We finished the proof of the assertion 
needed.  

LEMMA 3.2. Assume 1( ) 0bλ >  of the equation ( ( )) 0y b t yλ′′ + + = , then  

0

2 2 2
0 12 0 0

( ) ( )d ( ) ( )d
T TD

ty b t t y t t b y t tλ′ ≥ + +∫ ∫ . 

Proof. From Lemma 2.1 in ( 4E ), we have 
01 1( ) ( ) 0D

tb bλ λ≥ > for all 0t R∈ . Then, by the theory of 

differential operators [4], the eigenvalues of 0( ( )) 0y b t t yλ′′ + + + =  with Dirichlet boundary conditions 

(0) ( ) 0y y T= =  form a sequence 
0 01 2( ) ( )D D

t tb bλ λ< <"  which tends +∞ , and the corresponding 

eigenfunctions 1ψ , 2ψ ,"  are an orthonormal base of 2 (0, ).L T Hence , given ic R∈  and 1
0 (0, )y H T∈ , 

we can write
1

( ) ( )i i
i

y t c tψ
≥

=∑ , and  

2 2 2 2 2
0 00 0

1

(( ( )) ( ) ( ))d (( ( )) ( ) ( ))d
T T

i i i
i

y t b t t y t t c t b t t t tψ ψ
≥

′ ′− + = − +∑∫ ∫  

                        
0

2 2

0
1

= ( ) ( )d
TD

i i t i
i

c b t tλ ψ
≥
∑ ∫ 0

2
1 0

( ) ( )d .
TD

tb y t tλ≥ ∫  

This completes the proof. 

LEMMA 3.3. There exist 2 1 0B B> > , 3 0B >  such that any positive T-periodic solution ( )x t  of (1.1–
2.2) satisfies  

2x B
∞
< , 3x B

∞
′ < . 

Proof. From condition ( 2H ) and (3.5), we know that there is 0 0h >  such that  

0 0( , ) ( ( ) )g t s b t s hε≤ + +  (3.9)

for all t  and 0s > .  
Multiplying (3.3) by ( )x t  and then integrating over [0, T], we get  

 2

2 0
( )d

T
x xx Cxx tτ′ ′′ ′= − +∫ 0

( , ( )) ( )d
T

g t x t x t t= ≤∫τ    

 0 00
(( ( ) ) ( ) ) ( )d

T
b t x t h x t tε≤ + +∫

22
0 02 10

( ) ( )d .
T

b t x t t x h xε= + +∫               
 (3.10)

 

Note from Lemma 3.1 that there exists 0t  satisfies 0 0 1( ) .B x t B< <  Let 0 0( ) ( ) ( )u t x t t x t= + − , then 
1
0 (0, )u H T∈ . Thus  

 2 2
0 00 0

( ) ( )d ( ) ( )d
T T

b t x t t b t t x t t t= + +∫ ∫ 2 2
0 0 00

( )( ( )+2 ( ) ( ) ( ))d
T

b t t x t x t u t u t t= + + ≤∫  
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2 2
1 1 01 2 2 0

2 ( ) ( )d .
T

B b B b u b t t u t t≤ + + +∫  
By the Hölder inequality, the other terms in ( 3.10) can be estimated as follows :  

1
2 22 2

0 0 1 12 2 2
2x TB B T u uε ε

⎛ ⎞
≤ + +⎜ ⎟

⎝ ⎠
,    

1
2

0 0 11 2
h x h TB T u

⎛ ⎞
≤ +⎜ ⎟

⎝ ⎠
.  

Thus ( 3.10) reads as  

2 2 2
0 1 0 02 2 2 0

( ) ( )d ,
T

u A A u u b t t u t t′ ≤ + + + +∫ε  (3.11)

where 2 2
0 0 1 0 1 1 1

A TB h TB B Bε= + + , 
1 1
2 2

1 0 1 0 1 2
2 2A B T h T B bε= + +  are positive constants.  

Now, using 
0

2 2 2 2
1 1 02 2 0
( ( )) ( ) ( ( ) ( ) ( ))d ,

TD
tb t u b u u t b t t u t tλ λ ′≤ ≤ − +∫ we get from ( 3.11 ) that 

2
1 0 1 02 2

( ( ( )) )b t u A u Aλ ε− ≤ + . 

Consequently, 22
u A<  for some 2 0A > . By (3. 11) , one has 32 2

x u A′ ′= <  for some 3 0A > . From 

these, for any 0 0[ , ]t t t T∈ + , ( )
0

1 1
2 2

0 1 1 3 22
( ) ( )d : .

t

t
x t x t x t t B T x B T A B′ ′≤ + ≤ + ≤ + =∫  Thus 2x B

∞
<  

is obtained .  

In order to prove 3x B
∞
′ < , we write (1.1) as ( ) ( ) : ( ) ( , ( ))x t H t Cx t g t x t′′ ′− = = + . As 

0
( )d 0

T
H t t =∫ , 

thus 
1 1

( ) 2 ( )H t H t+= . From (3. 9) we have  
+

0 0 1( ) max( ( ),0) ( ) ( ) ( ) ( )H t H t C x t b t x t h C x t Cε′ ′= ≤ + + + ≤ + , 

where 2x B
∞
<  is used . As 1( ) 0x t′ =  for some 1t , we have  

10 0
max ( ) max ( )d

t

tt T t T
x x t x s s

∞ ≤ ≤ ≤ ≤
′ ′ ′′= = ∫ 0 0

( ) d 2 ( ) d
T T

H s s H s s+≤ = ≤∫ ∫  
1
2

12
2 CT x TC
⎛ ⎞

′≤ +⎜ ⎟
⎝ ⎠

1
2

3 1 32 : .CA T TC B
⎛ ⎞

≤ + =⎜ ⎟
⎝ ⎠  

We have proved is that the 2,1W  norms of x  are bounded .
 Next , the positive lower estimates 

[0, ]
min ( )
t T

m x t
∈

=  are obtained from ( 1H ) .  

LEMMA 3.4. There exists a constant 4 0(0, )B B∈  such that any positive solution ( )x t  of (1.1–2.2) 
satisfies  

       4( )x t B>  for all t . 

Proof. From ( 1H ), we fix some 4 0(0, )A B∈ such that 3( , )g t s CB< − for all t  and all 40 s A< ≤ , where  

3B  is same as above. Assume now that 2 4[0, ]
min ( ) ( ) .
t T

m x t x t A
∈

= = <  By Lemma 3.1, 0max ( )
t

x t B> . Let 

3 2t t>  be the first time instant such that 4( ) .x t A= Then for any 2 3[ , ],t t t∈ we have 4( )x t A≤  and 

3( ) .Cx t CB′− ≤  Hence, for 2 3[ , ],t t t∈ 3( ) ( ) ( , ( )) ( ) 0.x t Cx t g t x t CB Cx t′′ ′ ′= − − > − ≥ As 2( ) 0, ( ) 0x t x t′ ′= >   

 for 2 3( , ]t t t∈ . Therefore, the function 2 3:[ , ]x t t R→  has an inverse, denoted by ξ . 
Now multiplying (1.1) by ( )x t′  and integrating over 2 3[ , ]t t , we get  

4 3

2

( ( ), )d ( , ( )) ( )d
A t

m t
g x x x g t x t x t tξ ′− = −∫ ∫

3

2

2( ( ) ( ) ( )( ( )) )d
t

t
x t x t Cx t Cx t t′′ ′ ′ ′= +∫ = 
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3

2

2 2 2
5

1( ( )) d ( ( ))
2

t

t
C x t t x t A′ ′= + ≤∫  

for some 5 0A > . Using condition ( 1H ) 

4 4

0( ( ), )d ( )d
A A

m m
g x x x g x xξ− ≥ → +∞∫ ∫  (3.12)

if 0 .m +→  Thus we know from (3.12) that 4m B>  for some constant 4 0B > .  

Now we give the proof of Theorem 1.1. From (3.5), there exist constant 1 0B >  such that 

0

1 ( , )d 0
T

g t x t
T

>∫  for all 1x B> . Let the open bounded in X  be  

{ }1 2 3: ( ) and ( ) for all [0, ]x X E x t E x t B t T′Ω = ∈ < < < ∈ , 

where 1 0 40 min{ , }E B B< < , 2 1 2max{ , }.E B B>  From (3.1), (3.2), it follows that QN  and ( )K I Q N−  are 

continuous, and ( )QN Ω  is bounded and then ( ) ( )K I Q N− Ω  is compact for any open bounded XΩ ⊂  
which means N  is L-compact on Ω , condition (i) of Lemma 2.2 is satisfied. For any Kerx L∈ ∂Ω∩ , we 

have 
0

1 ( , )d
T

QNx g t x t
T

= ∫  and we obtain 1 10

1( ) ( , )d 0
T

QN E g t E t
T

= <∫ , 2 20

1( ) ( , )d 0
T

QN E g t E t
T

= >∫ ,which  

implies the condition (ii) of Lemma 2.2 is satisfied . Define  

0

1( , ) (1 ) (1 ) ( , )d
T

H x x QNx x g t x t
T

μ μ μ μ μ= + − = + − ∫ . 

( , )H x μ  is a homotopic mapping for all ( , ) ( Ker ) [0,1]x Lμ ∈ ∂Ω ×∩  and by using homotopic invariance 
theorem (we refer to [11, Section 2.3] for the notion of homotopic mapping and homotopic invariance 
theorem) , we have  

0 Ker 0( | , Ker ) ( , Ker ) 0LD QN L D x LΩ = Ω ≠∩ ∩ . 

Thus condition (iii) of Lemma 2.2 is also verified. Therefore 0Lx Nx+ =  has at least one solution in Ω , 
which means (1.1) has at least one positive T-periodic solution.  
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