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Abstract. The variable-order fractional differential equations appear in modeling diverse physical 
problems. The main issue we address in this paper concerns an accurate numerical solution of a class 
of variable-order differential equations. The given problem is transformed into a system of algebraic 
equations using the so-called operational matrix of variable-order differentiation and the shifted Legende-
Gauss-Radau collocation approach. Accordingly, the effort performed in calculations can be reduced. 
Numerical simulation for a specific problem is presented to demonstrate the computational efficiency 
and accuracy of the proposed algorithm. 
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1. INTRODUCTION 

The theory of fractional differential operators generalizes the notion of standard operators of integer 
orders to fractional orders. Such differential operators emerges naturally as a tool for the description of a 
broad range of non-classical phenomena in the applied sciences and engineering [1–11]. Recently, it has 
been demonstrated that in many dynamic processes, the underlying differential operators not only appear as 
constant fraction, but they also possess a dynamic nature in a sense that their order is variable, which may 
vary in time and/or space [12–16]. The pioneering work of variable-order operators can be traced to Samko 
et al. [17] by introducing the variable-order integration and Riemann-Liouville derivative. Since the kernel 
of the variable-order operators has a variable-exponent, analytical solutions to variable-order fractional 
differential equations (FDEs) are more difficult to obtain, and have not been the focus of much attention [18–
20]. In general, finite-difference methods are today the most developed methods for the numerical 
approximation of variable-order FDEs, see [21, 22]. In the last decade, there are a special attention to 
propose and develop spectral methods for solving FDEs with both fixed-order and variable-order operators 
[23–27]. In the same line of thought, Bhrawy and Zaky [28] proposed an accurate spectral collocation 
method for solving one- and two-dimensional variable-order fractional nonlinear cable equations. Chen et al. 
[29] proposed a numerical method to estimate the variable-order fractional derivatives of an unknown signal 
in noisy environment. Tavares et al. [30] presented a numerical tool to solve variable-order fractional partial 
differential equations. 

In this paper, we consider a general class of variable-order fractional differential equations: 
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0 xuxuxfxux
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0

x
x

C ζD  denotes the variable-order Caputo fractional derivative, 0 < ( ) <1xζ  and μ  is a constant. 
The aim of this study is to develop a numerical algorithm to improve the accuracy of the numerical 

solutions of the variable-order fractional initial value problems (1). The proposed algorithm converts the 
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variable-order fractional differential equation (1) into a system of algebraic equations, which simplifies the 
solution process. 

The paper is laid out as follows. In Sec. 2, we begin with some preliminary definitions of fractional 
calculus and properties of the shifted Legendre polynomials. In Sec. 3, the operational matrix for the 
variable-order fractional derivative of the shifted Legendre polynomials is derived. In Sec. 4, we develop a 
collocation scheme to solve the variable-order fractional initial value problems. In Sec. 5, the proposed 
method is applied to a specific example. Finally, the conclusions are given in Sec. 6. 

2. DEFINITIONS AND PROPERTIES 

There are several definitions proposed in the literature for variable-order fractional operators. We state 
some of them. In all results that follow we assume 0=)(xu  for 0<x . We recall some definitions of the 
fractional integrals of variable-order. 

1. The left-sided variable-order fractional integral operator is defined as [17],  
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2. In [31], several definitions are proposed. The first is identical to (2). The next one is  
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3. We state another definition introduced in [31], where it is assumed that ζ  is a function of )( sx − , 
i.e. 
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where Re( ( )) 0xζ ≥ . 
The Caputo variable-order derivative operator could now be defined simply (as in the case of constant 

order [32]) as follows,  
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where )(=),(),(=),( ssxqxsxq ζζ  and )(=),( sxsxq −ζ , in cases (2–4). Thus, we obtain, respectively:   
1. Type I: The left Caputo fractional derivative of order )(xζ  
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2. Type II: The left Caputo fractional derivative of order )(xζ  
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3. Type III: The left Caputo fractional derivative of order )(xζ  
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Such definitions have been used by numerous researchers, for example, Coimbra et al. [33, 34] used 
the first type in the modeling of viscous-viscoelastic oscillator; Ingman and Suzdalnitsky [35] employed the 
second type in the modeling of viscoelastic deformation process. Sun et al. [36] made a comparative 
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investigation of integer-order derivative, constant-order fractional derivative and the first two types of 
variable-order fractional derivatives in characterizing the memory property of systems. However, the differences 
between the three types in applications are still not clear. There are other definitions of variable-order 
fractional derivatives. In this paper, we will focus our attention on the first type. 
The operator )(

0
x

x
C ζD  satisfies the following property (1 < ( ) < 2)xζ  
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Next, let us introduce some properties of the shifted Legendre polynomials [37, 38]. It is well-known 
that the classical Legendre polynomials are defined on –1, 1, by the three-term recurrence relation:  
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Let the shifted Legendre polynomials 1)2( −
h
x

jL  be denoted by ).(xh
jL  Then )(xh

jL  can be generated 

by using the following recurrence relation:  
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The orthogonality condition of the shifted Legendre polynomials is  

0
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The explicit analytic form of )(xh
jL  of degree j  is given by [32]  
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which alternatively may be written in the following matrix form  

),(=)(, xXEx MhMhΘ  (13)

where h
kj ,ε  for Mkj ,0,1,=, …  are the matrix entries of ,hE  and  
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Due to the orthogonality property of the shifted Legendre polynomials (10), the matrix hE  is invertible 
and the vector )(xX M  can be expressed in terms of )(, xMhΘ  as  

).(=)( ,
1 xExX MhhM Θ−  (15)
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We assume )(xu  is a square integrable function in ][0,h , then it can be expressed in terms of shifted 
Legendre polynomials as  
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from which the coefficients jc  are given by  
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If we approximate )(xu  by the first 1)( +M -terms, then we can write  
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where the shifted Legendre coefficient vector C  is given by ].,,,[= 10 M
T cccC …  

3. DERIVATION OF THE DIFFERENTIATION MATRIX 

The first-order derivative of the shifted Legendre vector )(, xMhΘ  can be expressed by  
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Repeated use of (22), enables one to write  

(1) ( )
, , ,

d ( ) = ( ) ( ) = ( ), = 1,2,...,
d

q
q q

h M h h M h h Mq x D x D x q
x

Θ Θ Θ  (24)

where N∈q  and the superscript in )(q
hD , denotes matrix powers. 

In the following theorem we generalize the operational matrix of derivative of shifted Legendre 
polynomials given in (24) for variable-order fractional derivatives. 

Theorem 3.1 The Caputo variable-order fractional derivative of the shifted Legendre vector )(, xMhΘ  
is given by  
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where nxn <<)(<<1 maxmin ζζζ−  and )(, xhD ζ  is an 1)(1)( +×+ MM  matrix of the following form  

,= 1
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−
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where hE  is defined in (13) and B  is a 1)(1)( +×+ MM  matrix and its elements, Mjibij ≤≤ ,0;  are 
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Proof. The analytic form of the shifted Legendre polynomials )(xh
iL  of degree i  is given by (11). 

Using (14) and (15) yields  
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This, the above relation together with (9), leads to  
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Employing (26) and (27) yields  
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Since hE  is invertible, then  

( ) 1 1
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where 1
)(, = −

hhxh EBED ζ  is an upper triangular matrix, and this proves the theorem. 

4. NUMERICAL SCHEME 

We now use the shifted Legendre polynomials [32, 37] as basis functions for the collocation scheme 
[38–40] together with the operational matrix of the variable-order fractional derivative in order to transform 
the problem (1) into a problem consisting of a system of algebraic equations. 

Now, making use of (18), (19), and (25), enables one to write  
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Employing Eq. (31) in Eq. (1), yields  
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Suppose )(0 Mixi ≤≤  are the shifted Legende-Gauss-Radau nodes of ).()( 1 xx h
M

h
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these nodes in (32); therefore the collocation scheme can be written as:  
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This constitutes a system of 1)( +M  algebraic equations in the required Legendre coefficients 
Mici ,0,1,=, … , which may be evaluated by employing Newton’s iteration method. Consequently, the 

approximate solution )(xuM  given in (18) can be achieved.  

5. NUMERICAL EXAMPLE 

In this Section we present a numerical example to illustrate the high accuracy and efficiency of our 
method proposed in this paper. First, let us define the convergence order (CO) by  

,
)/(log

))()/((log=
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21
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where )(Merror  denotes the error corresponding to polynomial degree M . To show the high efficiency of 
the algorithm, we examine the CPU time of our method. Here, all the computations are carried out by using 
Mathematica, version 8.0, on an Lenovo laptop with the configuration: Intel(R) Core(TM) i3-2328M CPU, 
2.20 GHz and 4.00 GRAM, with 64 bits operation system. Consider the following variable-order fractional 
differential equation:  
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and the exact solution is given by xexu =)( . 
We investigate the convergence order and CPU time of our method. The errors for different degrees 

M of the polynomials and computational time are shown in Table 1. From the results, a high order accuracy 
is achieved. Moreover, the method is highly efficient.   

Table 1 

L ∞ - errors of problem (34) versus M, 
convergence order, and CPU time (in seconds) 

M L ∞ - errors CO CPU time 
4 7.181 × 10-5  0.298 
6 1.105 × 10-7 15.973 0.313 
8 9.833 × 10-11 24.417 0.421 

10 5.790 × 10-14 33.330 0.448 
12 5.668 × 10-16 25.375 0.522 
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6. CONCLUSIONS 

In this paper, we have proposed a fast and precise algorithm based on Legende-Gauss-Radau 
collocation technique combined with the associated operational matrices of variable-order fractional 
derivatives. This algorithm was employed for solving a class of variable-order fractional differential 
equations. The algorithm has the advantage of transforming the problem into the solution of a system of 
algebraic equations, which greatly simplifies it. Finally, a numerical example has been presented to 
demonstrate the efficiency of the proposed algorithm. 
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