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Abstract. Robotic assisted brachytherapy is a dynamic field of research due to its tangible and imme-
diate results in the improvement of cancer patient’s life conditions. The inverse dynamic model of a 
parallel robotic system for general brachytherapy is presented in this paper. The PARA-BRACHYROB 
robotic system has 5 degrees of freedom (DOF), five for position and orientation of the needle inser-
tion module plus a redundant DOF dedicated for needle insertion. The dynamic model is obtained us-
ing the virtual work method and the dynamically equivalent lumped masses of the experimental 
model. A validation of the numerical results using a multi-body simulation software (the Siemens NX 
RecurDyn) is also presented, proving the accuracy of the developed model. 
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1. INTRODUCTION 

Nowadays the world encounters a very provocative challenge: the number of cancer patients is con-
stantly increasing, the most affected organs being the colon, lungs, prostate and bowel. Brachytherapy (BT) 
is a relatively new approach in the fight against cancer, implying the irradiation of the tumor only, by placing 
inside of it several radiation seeds using a required number of catheters. Many researchers proposed solu-
tions, most of them for prostate cancer treatment: [0, 2].  

For an efficient and robust control of the needle trajectory, in order to avoid any deflection, the use and 
implementation of the dynamic model of the robot becomes a necessity. Strasmann, in [0] proposes a thor-
ough study to estimate the dynamic characteristics of the needle insertion stage, while Sadjadi shows in [0] 
the needle deflection error spread for different targeted depths. In [0, 5, 6] the authors use the Newton-Euler 
approach has been used to calculate the actuation and reaction forces of the mechanism. The Lagrange for-
malism introduces scalar multipliers for each kinematic closure equation. Abdellatif [0] in as well as Miller 
and Clavel in [0] used the Lagrangian formalism for closed-loop mechanisms (although reputed of being in-
efficient). The virtual work ([0, 10, 11, 12]) formulation is considered as a mixed form of all above men-
tioned methods and is far more efficient because it can eliminate all forces and internal joints and it allows 
direct determination of forces/torques of the robot. Staicu in [0] and [0] developed the inverse kinematic and 
dynamic model of an orienting gear train mechanism using recursive matrix relations. Section 2 of the paper 
is dedicated to the description of the studied parallel robot for BT and the analytic inverse dynamic model. 
Section 3 presents the simulation dynamics results, showing the validation of the inverse dynamics using the 
Siemens NX solver software. The conclusions are presented at the end of the paper. 

2. INVERSE DYNAMICS OF THE PARA-BRACHYROB PARALLEL ROBOT  

PARA-BRACHYROB is a parallel robot that has 5-DOF and two modules: the first one has 3-DOF 
and 3 active joints, namely: 321 ,, qqq  while the second one has 3-DOF and 2 active joints, namely: 54 , qq  
(Fig. 1). Each module works in cylindrical coordinates. The coordinates 5421 ,,, qqqq  are prismatic joints 
along an axis parallel with OZ, while the third motion of each module is a rotation around the same axis, 
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with the first rotation joint, 3q  as an active joint, while the second rotation joint (for the second module) is a 
passive joint. Besides the active coordinates 54321 ,,,, qqqqq  the PARA-BRACHYROB parallel robot for 
BT has an additional, redundant 1-DOF mechanism represented by the 6q  active joint, used only for the nee-
dle insertion. The kinematic model of the robot has been presented in detail in [0], the only difference con-
sisting in the additional 1 DOF needle insertion module, [0, 15].  

The inverse dynamic model of the PARA-BRACHYROB experimental model (Fig. 2) has been devel-
oped using the virtual work principle. The input data for inverse dynamics consist in: the motion laws of the 
robot for posing (position and orientation of the end-effector), the inverse kinematic model (positions, ve-
locities and accelerations) and the masses of robot elements. Applying the algorithm equations for inverse 
dynamics, the drive forces and torques will be obtained. Applying the virtual work principle, the torque vec-
tor is obtained: [ ]TFFFMFF 654321 ,,,,,=τ  where 65421 ,,,, FFFFF  are the linear forces obtained at the level 
of each active corresponding joint and 3M  is the torque in the 3q  active rotational joint (Fig. 1). 

For the determination of the inverse dynamic model, the following moving elements of the robot struc-
ture have been considered (Fig. 3): the elements (1)  ÷  (28), having the masses 1m  ÷ 28m ; the ball screws 
(29), (30), (31), (32), all the same having the mass 29m ; the speed reducers (33), (34), (36), (37) for the 

5421 ,,, qqqq active joints, having the masses 33m , the speed reducer (35) for the 3q active joint, having the 
mass 34m ; the couplings, all identical, having the masses: 35m ; the motors (38), (39), (40), (41), (42), all 
identical, having the mass: 36m , the motor (43) corresponding to the 6q active joint, with the mass 37m  with 
the speed reducer (44) having the mass 38m ; the pulleys (45) corresponding to the 6q active joint, each with 
the mass 39m , the screw (46) corresponding to the 6q active joint, with the mass 40m . The following lengths 
have been considered, measured on Z axis: 1l  ÷ 8l and 10l  ÷ 14l , while 9l  has been measured along the needle 
axis. 

Two simplifying hypotheses have been used to develop the dynamic model: the use of lumped masses 
and the neglecting of friction forces. In order to use the masses of the moving bodies in the robot dynamic 
equations, a simple way is to concentrate these masses into one or several key-points. Thus, a bar having the 
length l and mass m is dynamic equivalent to the three points (two of equal mass, at the two ends of the bar: 

mmm BA 6/1== ) and the other one in the middle: mmC 3/2=  [0]. 
For the spline shaft, the moment of inertia 1I was computed using (1), where 28D represents the spline 

shaft diameter ( 28 29 25mmD D= = ). The inertia moment of the bodies that rotate around the Z axis of the ro-
bot (the spline shaft (28)) has been taken from the CAD model ( 2I and 3I ), the same being applied for the 
bodies that rotate around the fixed cylindrical shaft (47): 4I and 5I . The inertia moment of the ball screws 
(29–32), can be determined in using (2), where 29D represents the nominal diameter of the ball screws. 
Knowing the inertia moment of the motors (38), (39), (40), (41), (42) as being 7I , of the speed reducers (33), 
(34), (36), (37) as being 8I , of the speed reducer (35) as 9I  and of the couplings as 10I  and using the kinetic 
energy as in (2), the reduced moment to the active joint 3q and respectively to the fixed cylinder shaft (47) is 
obtained using (3-4), where 2362 =n  is the gear ratio of the speed reduction unit (35). 

2 2
1 28 28 / 8 [kg mm ]I m D= ⋅ ⋅  (1)

2 2
6 29 29 / 8 [kg mm ]I m D= ⋅ ⋅  (2)

2
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( ) 2
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3_ 33
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The expressions of the reduced inertia moments to the speed reducer (35), respectively the mass center 
of the fixed cylindrical shaft (47) are: 

2
27321091_ 3

nIIIIIII qred ⋅+++++= ;   43_ III cylred +=  (5)
 

 
 

Fig. 1 – The kinematic scheme of PARA-BRACHYROB 
parallel robot for brachytherapy. 

Fig. 2 – The experimental model of PARA-BRACHYROB 
parallel robot for brachytherapy. 

The gyration radius has been computed, both for the 3q active joint as well as for the cylindrical shaft (47): 

( )( )330 _ 28 34 35 36 2 3 5 6 7 10/ / 6 [mm]red qi I m m m m m m m m m mΔ = + + + + + + + + +  (6)

( )( )31 _ 12 13 15 16 17 18/ /6 [mm].red cyli I m m m m m mΔ = + + + + +  (7)

For the active joint 6q , the inertia moment of the motor (43) ( 11I ) and speed reducer (44) ( 12I ) have 
been taken from the producer’s catalogue and the inertia moment of the pulleys (45) and screw (46) have 
been computed in (8). 

2 2
13 39 45/8 [kg mm ]I m D= ⋅ ⋅ ; 2 2

14 40 46 /8 [kg mm ].I m D= ⋅ ⋅  (8)

The reduced inertia moment to the speed reducers shafts has been computed in (9) and the subsequent 
gyration radii in (10). 

( ) ( ) ( ) ( ) ;2/2/2/2/ 1086
2
171086

2*2
1

*
7

2*
_ IIInIIIIqnqIqI iiiired +++⋅=++⋅+⋅⋅=⋅ 1, 2, 4, 5i =  (9)

( )32 _ 29 33 35 36/ [mm]red ii I m m m mΔ = + + + , (10)

with 32353433 ΔΔΔΔ === iiii . The reduced inertia moment to the motor (43) has been computed in (11) and 

the gyration radius in (12). *
iq is computed using (13) where 0iq represents the position of the active joints 

5421 ,,, qqqq  at the beginning of motion, P is the screw lead (P = 5 mm) , while for *
6q , p = 0.8 mm. 

2
_6 11 3 12 13 142 ,redI I n I I I= ⋅ + + ⋅ +  (11)

( )36 _6 37 38 39 40/ 2 [mm],redi I m m m mΔ = + + ⋅ +  (12)
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)(/2 0
*

iii qqPq −⋅= π , 5,4,2,1=i ;   )(/2 606
*
6 qqPq −⋅= π . (13)

Starting from these masses, a number of 43 lumped masses (14) are considered as input data into the 
inverse dynamics algorithm, as presented in Fig. 4. 

The following notations have been used for the inverse dynamic model: [ ]Tqqqqqqq 654321 ,,,,,= , 
[ ]Tqqqqqqq 654321 ,,,,,= , [ ]Tqqqqqqq 654321 ,,,,,= – the vector of the active joint coordinates; speeds, re-

spectively accelerations; [ ]Tqqqqqqq 654321 ,,,,, δδδδδδδ =  – the vector of virtual displacements for the active 

joint positions; [ ]TEEEP ZYXX ,,= , [ ]TEEEP ZYXX ,,= , [ ]TEEEP ZYXX ,,= – the vector of the E point coor-
dinates, velocities and accelerations; [ ]TEEEP ZYXX δδδδ ,,=  - the vector of virtual displacements of the E 

point coordinates; [ ]TiiiMi ZYXX ,,= , [ ]TiiiiM Z,Y,XX = , [ ]TiiiM ZYXX
i

,,=  – the vectors of the mass coor-

dinates in *
im  equivalent points with the system with 47 mobile bodies of the robot, velocities and accelera-

tions; 
[ ]TiiiM ZYXX

i
δδδδ ,,= – the vector of virtual displacements of the *

im  points coordinates; 
[ ] [ ]TT FFFMFF 654321654321 ,,,,,,,,,, == τττττττ  – the vector of active forces/moments; 
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Fig. 3 – The CAD model of PARA-BRACHYROB parallel robot. 

;6/;3/2;6/;;;6/;; 7
*
87

*
7106

*
65

*
54

*
473

*
32

*
21

*
1 mmmmmmmmmmmmmmmmmm ==+===+===

;;;3/2;6/;3/2;6/6/ 12
*
1411

*
1310

*
12921

*
119

*
101098

*
9 mmmmmmmmmmmmmmm ===+==++=

;6/;3/2;6/;;;6/ 18
*
2018

*
191716

*
1815

*
1714

*
161813

*
15 mmmmmmmmmmmmmm ==+===+=

;;3/2;6/;3/2;6/6/ 22
*
2517

*
242026

*
2320

*
22201719

*
21 mmmmmmmmmmmmm ==+==++=

(14)



5 Inverse dynamic modelling of a parallel robotic system for brachytherapy  59

;;6/;2;6/ 27
*
292425

*
2824

*
272423

*
26 mmmmmmmmmm =+==+=

( )[ ] ;2/6/107653236353428
*
31

*
30 mmmmmmmmmmmm +++++++++==

( )[ ] ( ) ;2/;2/6/ 36353329
*
37

*
36

*
35

*
34181716151312

*
33

*
32 mmmmmmmmmmmmmmmm +++====+++++==

( ) ( )* * * * * *
38 39 40 41 29 33 35 36 42 43 37 38 39 40/ 2; 2 / 2.m m m m m m m m m m m m m m= = = = + + + = = + + ⋅ +  

The coordinates of the equivalent mass points with respect to the fix coordinate system are: 
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Fig. 4 – The PARA-BRACHYROB lumped masses. 

In order to obtain the dynamic model for PARA-BRACHYROB, the virtual work principle has been used:  
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where τδ ⋅Tq  is the virtual work of all actuating forces and moments and ( )∑
=

+⋅
43

1i

g
i

In
i

T
i TTXδ  is the virtual 

work of inertia forces and gravitation forces corresponding to the equivalent system. The matrices of the in-
ertia and gravitational forces are defined as follows:  
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Considering subsequently each of the mass points iM  defined above, the following relation between the ve-
locity vector of the points and the one of the active joints can be written:  

qJX iMi
δδ ⋅=

  
T
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TT
M JqX

i
⋅= δδ  (18)
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1 2 3 4 5 6

1 2 3 4 5 6

,
i i i i i i

i i i i i i i

i i i i i i

X q X q X q X q X q X q
J Y q Y q Y q Y q Y q Y q

Z q Z q Z q Z q Z q Z q

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎡ ⎤
⎢ ⎥= ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦

i = 1, …, 43 (19)

Subsequently, the equations (18) can be derived with respect to time leading to the expressions which 
characterize the relation between the equations of the active joints accelerations and the ones of each indi-
vidual point of concentrated mass:  

qJqJX iII ⋅+⋅= . (20)

From (16), and using the (17) to (20), the torque vector is obtained: 

( )∑
=

+⋅−=
43

0i

g
i

In
i

T
i TTJτ . (21)

3. SIMULATION RESULTS AND EXPERIMENTAL TESTS 

In a real-case scenario of needle placement inside the patient, the robot moves from a starting (arbitrary) 
position and orientation of the needle (point ( )SSS ZYXS ,,  and orientation Sψ and Sθ ) up to an insertion point 
( )III ZYXI ,,  into the patient’s body, position in which the needle is oriented. From this point onward, the 

needle is inserted into the patient, using only the needle insertion module up to the target point ( )TTT ZYXT ,,  
(inside the tumour).  

The analytic algorithm presented in section 1 has been implemented in Matlab using a set of geometric 
parameters that fit the experimental model designed and presented in figure 1: b1 = 395 mm, b2 = 495 mm, 
d1 = d2 = 400 mm, 8 12170 mm, 67 mm, 615 mmcl l d= = = . The maximum velocity and acceleration for the nee-

dle orientation and position at the insertion point are: 2
1max 1max20 mm / , 10 mm /v s a s= = . During needle inser-

tion, no tissue contact has been considered, leading to a low actuation force in the 6q active joint. For the 
proper determination of the resistance force which appears during tissue penetration, a test bench has been 
developed, modeling a medically relevant scenario. Thus, a calibrated press, model ZWICK/ROEL has been 
used to insert a BT needle into a large chunk of pork meat. The insertion point was selected in the median 
region of the meat and driven with a constant speed of 10mm/s. As shown in the graphics, the resulting tissue 
resistance reaches peaks of 10.5 N, while the maximum mean value is of about 7.9 N. The considered trajec-
tory is a real-case scenario when target point (tumour) is in the liver. The starting position, the insertion point 
and the considered target point coordinates (in mm and degrees) are: XS = 307.5; YS = 800; ZS = 400; 
ΨS = 90°, θS = 60°, 250;750;350 === III ZYX  and 1818.244;0053.755;7194.355 === TTT ZYX . The data 
obtained in Matlab, using the Analytical Model (AM) have been compared with the simulation data through 
a multibody simulation software – RecurDyn from Siemens NX (MBS), where the friction forces have also 
been neglected. The working parameters used in this paper represent the upper limits for speed and accelera-
tion imposed by the BT procedure, leading to the conclusion that the control algorithm of the robot can be 
implemented using the simplified inverse dynamic model developed by the authors. Analyzing the simula-
tion plots for these inverse dynamic models, a very good correlation between the two curves is shown, vali-
dating the new inverse analytical model developed in this paper (Fig. 5). The maximum error (Err) between 
the values of the two curves is 5.98% (the error being computed as: [ ]Err / 100 %AM MBS AM= − ⋅ ). 
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Fig. 5 – Forces and torques comparison between the AM – MATLAB (green, continuous line) and the MBS – RecurDyn (black, dashed line). 

Experimental tests for the needle insertion ( 6q ). 

4. CONCLUSIONS 

The goal of the paper is to develop an easy and fast way to compute the forces/torques of the robot for 
given laws of motion for the end effector, allowing a better control of the needle position, orientation and 
insertion. Using the virtual work and the lumped masses principles, the analytical inverse dynamic model has 
been presented in the paper. The experimental data concerning the needle insertion stage show that special 
care is needed during the skin penetration where the data shows a force peak which could to needle deflec-
tion. Together with an algorithm which will correlate the insertion speed with the resistance force of the tis-
sues, the authors are confident that the robotic system will be able to perform the task with the required accu-
racy. The developed model has been used to elaborate a MATLAB simulation software on real trajectories 
and the results have been compared to those obtained by using a multi-body simulation commercial software. 
The errors introduced by using the lumped masses model are small, proving that this methodology can be 
applied on a large scale for parallel robots as an alternative to the classical approaches.  

ACKNOWLEDGEMENTS 

This paper was realized within the project no. 173/2012, code PN-II-PCCA-2011-3.2-0414, entitled 
”Robotic assisted brachytherapy, an innovative approach of inoperable cancers - CHANCE” and the project 
no. 59/2015, code PN-II-RU-TE-2014-4-0992, entitled „A multi-purpose needle insertion device for the 
diagnosis and treatment of cancer - ACCURATE”, which run with the financial support of MEN-UEFISCDI. 

REFERENCES 

1. BAUMANN M., et al., Prosper: image and robot-guided prostate brachytherapy, 32, 2, pp. 63–65, 2011. 
2. SADJADI, H., HASHTRUDI-ZAAD, K., FICHTINGER, G., Needle deflection estimation: prostate brachytherapy phantom ex-

periments, Int. J. Comput. Assist. Radiol. Surg., 9, 6, pp. 921–929, 2014. 
3. STRASMANN G., et al., Advantage of Robotic Needle Placement on a Prostate Model in HDR Brachytherapy, Strahlenther 

Onkol., 187, 6, pp. 367–72, 2011. 
4. IBRAHIM, O. and KHALIL, W., Kinematic and dynamic modeling of the 3-RPS parallel manipulator, 12th IFToMM World 

Congress, Besançon, 2007. 
5. WANG, K. et al., Dynamics Analysis of a Three-DOF Planar Serial-Parallel Mechanism for Active Dynamic Balancing with 

Respect to a Given Trajectory, Int. J. Adv. Robotic Sys., 10, pp. 1–10, 2013. 



9 Inverse dynamic modelling of a parallel robotic system for brachytherapy  63

6. TAGHIRAD, H.D. and NAHON, M.A., Dynamic Analysis of a Macro–Micro Redundantly Actuated Parallel Manipulator, Adv. 
Robotics, 22, 9, pp. 949–981, 2012. 

7. ABDELLATIF, H. and HEIMANN, B., Computational efficient inverse dynamics of 6-DOF fully parallel manipulators by using 
the Lagrangian formalism, Mechanism and Machine Theory, 44, 1, pp. 192–207, 2009. 

8. MILLER, K. and CLAVEL, R., The Lagrange-Based Model of DELTA-4 Robot Dynamics, Robotersysteme, 8, pp. 49–54, 1992. 
9. STAICU, S. and ZHANG, D., A novel dynamic modelling approach for parallel mechanisms analysis, Robotics and Computer-

Integrated Manufacturing, 24, 1, pp. 167–172, 2008. 
10. STAICU, S., Dynamics of a 2-DOF orienting gear mechanism, Rev. Roum. Sci. Techn., 5, 1, pp. 67–77, 2009. 
11. STROE, I., STAICU, S., Calculus of joint forces using Lagrange equations and principle of virtual work, Proceedings of the 

Romanian Academy, Series A, 11, 3, pp. 253–260, 2010. 
12. CHABLAT, D., WENGER, P., STAICU, S., Dynamics of the orthoglide parallel robot, UPB Scientific Bulletin, Series D: Me-

chanical Engineering, 71, 3, pp. 3–16, 2009. 
13. PLITEA N., PISLA D., VAIDA C., GHERMAN B. et al., On the Kinematics of a New Parallel Robot for Brachytherapy, Pro-

ceedings of the Romanian Academy – series A: Mathematics, 15, 4, pp. 354–361, 2014. 
14. PLITEA N., et al., Parallel robot for brachytherapy with two kinematic guiding chains of the platform (the needle) type CYL-

U, Patent pending, RO129698-A2, 2013. 
15. PISLA D., et al.: Application Oriented Design and Simulation of an Innovative Parallel Robot for Brachytherapy, Proc. of the 

ASME 2014 Int. Design Eng. Tech. Conf. and Comp. Inf. Eng. Conf. – IDETC/CIE, 17–20 Aug., New York, USA, 2014. 
16. DIZIOGLU, D., Getriebelehre, Band 3, Dynamik. Fried Vieweg und Sohn, Braunschweig, 1966. 

Received June 8, 2015 


