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Abstract. After an introduction that recalls the Lagrange interpolation and the Gauss regression, in §2 
we introduce what can be called the cylinders and the cones of regression, that indicate the data trend. 
The main result of this paper is presented in §4, as an application of the pseudoinverses of matrices, 
namely an algorithm to determine a geometrical pattern which is the nearest to a finite set of points, 
which can be interpreted as observation points. 
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1. INTRODUCTION 

It is well-known the role either of the interpolations or of the regression curves in processing numerical 
data, in order to fit a given set of points in a plane and to get some suggestive predictions regarding the trend 
of those data. This paper treats such problems. 

We present now some known notions and results following [2, 3, 5]. 
Fix integers n ≥ 1, r ≥ 1 and a commutative field K of characteristic zero (e.g. K = )(X,,, RCRQ ). Let 

],,[ 1 nr XXK …  be the vector space of all polynomials in n in determinates, of degree at most r, with 

coefficients in K. Recall that a finite subset n
N Kaaa ⊂= },,,{ 21 …A  is a Lagrange set of degree r if for any 

data Kbb N ∈,,1 … , there is a unique polynomial ],,[ 1 nr XXKP …∈  such that 
 P(ap) = bp, for any 1 ≤ p ≤ N . (1) 

Explicitly, if ni
n

i
q

q

XXcP …1
1∑= ; ),,,( 1 niiq …=  rq ≤|| , Kcq ∈  and if ),,( 1 n

ppp aaa …= , then (1) 

becomes p
in

p
i

pq
q

baac n =∑ )()( 11 … . The number of coefficients qc , as well as indices ),,( 1 niiq …=  with 

riiq n ≤++= …1|| , is ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
n

rn
; all of them could be ordered lexicografically. Therefore, a necessary 

condition for A  to be Lagrange of degree r is ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
=

n
rn

|| A , that will be supposed in what follows. The 

property of A  to be Lagrange is generic (that means it takes place almost everywhere); indeed, the square 
matrix )( pqdD = , where nin

p
i

ppq aad )()( 11 …= ; Np ≤≤1 and ),,( 1 niiq …=  is nonsingular almost every-

where. On the other part, if we denote by NLL ,,1 …  the polynomials of degree at most r such that 

ijji aL δ=)(  for any i, j, then for any table of data (1), the solution of the interpolation problem is ∑
=

=
N

p
ppLb

1

; 

the polynomials Lp form a basis of the linear space ],,[ 1 Nr XXK … . 
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Examples 1.1. 

1) If n = 1, r ≥ 1, then N = r + 1 and any set },,,{ 121 += raaa …A is Lagrange of degree r (since the 
matrix D is Vandermonde, hence nonsingular). For any table (1), through the distinct points ),( pp ba , 

11 +≤≤ rp , passes the graph of the classical Lagrange polynomial of degree ≤ r. 

2) In the case n = 2, a Lagrange set of degree r has )2)(1(
2
1

++= rrN  elments. If r = 1, then N = 3 and 

a triangular plate },,{ 321 aaa  is Lagrange iff the vertexes 321 ,, aaa  are not colinear; if r = 2, N = 6 and 
hexagonal plate },,,{ 621 aaa …  is Lagrange iff its vertexes are not situated on the same conic. 

In the case n = 1, the Lagrange interpolation allowed some remarkable formulas, e.g. the Shannon 
sampling theorem well known from the signal theory. For n ≥ 2, the Lagrange interpolation is too rigid and 
moreover, whenever to a Lagrange set A  one adds a new point a , it is difficult to get conditions to }{α∪A  
to be Lagrange. Some shortcomings of the Lagrange interpolation, e.g. Runge phenomenon, were repaired by 
use of spline-functions. Gauss relaxed the rigid conditions like (1); in the case n = 1, he changed the point of 
view. Instead to require a polynomial curve passing through the „observation points” ),( ppp baM , 

11 +≤≤ rp , he proposed to find a family of curves ),,,( 1 Mxy λλϕ= …  with M parameters and to determine 
the values 00

1 ,, Mλλ …  such that the corresponding curve „lies near” all together points Mp. This was the 
beginning of the 2L  – technics (“least squares method”), see [2, 4]. 

2. CURVES AND SURFACES OF REGRESSION  

In what follows, we will suppose that R=K . Gauss replaced the condition (1), i.e. 
pMp ba =λλϕ ),,,( 1 …  for 11 +≤≤ rp  (an incompatible or overdetermined system), by the condition that all 

the differences pMpp ba −λλϕ=ε ),,,( 1 …  to be „simultaneously small”. The most convenient for this is the 

sum 2

1
p

M

p

ε∑
=

 to be minimum (not the sum of all pε  or || pε  to be minimum). Therefore, we have to determine 

pλ g such that ∑
+

=

−λλϕ=λλ
1

1

2
11 )),,,((),,(

r

p
pMpM yxg ……  is minimum. Supposing ϕ  of class C2, the 

necessary condition is: 0=
λ∂
∂

k

g , Mk ≤≤1 . Under that hypothesis this system has a solution ),,( 00
1 Mλλ … , 

the corresponding curve ),,,(: 00
1 Mxy λλϕ=Γ …  is called the regression curve which „mediates” among the 

observation points 11 ,, +rMM … ; see , for exemple, [3, 5]. 
Examples 2.1. 
If 21 λ+λ= xy , one obtains the classical Gauss regression right-line; in this case,  

∑
+

=

−λ+λ=λλ
1

1

2
2121 )(),(

r

p
pp yxg  

and the system 0
1
=

λ∂
∂g , 0

2
=

λ∂
∂g  has a unique solution ),( 0

2
0
1 λλ . The right-line 0

2
0
1 λ+λ= xy  passes between 

and not through the points pM , 11 +≤≤ rp  and indicates the trend of the respective data. If we add new 
values pa  at the set A , one obtain some predictive values pb ; for this reason, the term of “regression” is 
somehow unfortunate and it could be replaced by that of “progression” or “prediction”. 

We now change the point of view and consider a set },,,{ 21 Naaa …=A  of points ),,( 1 n
ppp aaa …=  

from nR , assimilated to “a cloud” of n –dimensional data, called points of observation (or surveillance). We 
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introduce two sugestive notions: cylinders and cones of regression circumscribed to the date cloudes, 
suggested from [5] Fig. 1.  

 
Fig. 1 

For any direction δ  of versor ),,( 1 nρρ=ρ … , one can consider the cylinder δΓ , parallel to δ  and 

circumscribed to A ; for this, take a right line 
n

nnxx
ρ
λ−

==
ρ
λ− …

1

11  , with n – 1 equations:  

nkxx kkk ≤≤=λ−ρ−λ−ρ 2,0)()( 111 . 

The fact that the points )1( Npap ≤≤  are simultaneously small near Δ  means that all  

)()( 111 k
p
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p
kk xx λ−ρ−λ−ρ=ε  
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2
111

21
1 )]()([),,( k

p
k

p
k

n

k

N

p
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…  

is minimum. From the necessary conditions 0=
λ∂
ϕ∂

k
, nk ≤≤1 , one get nλλ ,,1 … , by making use of the 

pseudoinverses of the correspoding matrices. Similarly, one can determine a cone with the vertex ncc ,,1 … by 

determining parameters nλλ ,,2 …  such that the right line 
n

nn cxcxcx
λ
−

==
λ
−

=
− …

2

2211

1
 is optimal 

relatively to the set A ; thus, all the differences )()( 11 kkk cxcx −−−λ  are simultaneously small, hence the 

function 2
11

21
2 )]()([),,( k

p
k

p
k

n

k

N

p
n cxcx −−−λ=λλψ ∑∑

==

…  is minimum. 

3. ON THE PSEUDOINVERSE OF MATRIX  

Fix a matrix )(, RnkMA∈  not necessarily square. For a given matrix )(1, RkMB∈ , Penrose has 
applied Gauss idea and instead of solving the linear system BXA =⋅ , he proved that there is a column 
vector T

n ),,( 1 λλ=Λ …  such that the norm |||| BA −Λ⋅  is minimum. Moreover, there exists and is unique a 

matrix )(, RnkMA ∈+ , called the pseudoinverse of A , such that BA ⋅=Λ + . If k = n and A is nonsingular, 

then 1−+ = AA  (the usual inverse); if k ≤ n and rank A = k, then 1)( −+ ⋅⋅= TT AAAA ; see [7], [8]; for some 
other applications of the pseudoinverses see [1]. 

 Examples 3.1.  
Suppose that A )(RnMA∈  is positively defined, )(, RnmMB∈ , )(1, RmMb∈  and k ≥ 0 a scalar. Put 

the problem to minimize the functional RR →mJ :   , XAXkAXXJ TT ⋅⋅+⋅=)( , with the restriction 
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bXB =⋅ . So, )()( AkXXJ n
T +⋅= I  and since Akn +I  is positively defined, there exists an inferior 

triangular matrix C such that T
n CCAk ⋅=+I . By denoting XCY T ⋅= , it follows that  

=⋅⋅⋅= XCCXXJ TT)(  2|||| YYY T =⋅ . 

Thus, we have to minimize ||||Y  with a restriction by the form bYD =⋅ ; hence bDY ⋅= + . 

Let us now fix an open set nU R⊂  and an integer k ≥ 1. For a map kUf R→:  of class C1(U), 

T
kfff ),,( 1 …=  and for any point Ux∈ , we consider the jacobian matrix ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

=
j

i
f x

fxJ )( ; ki ≤≤1 , 

nj ≤≤1 . The most important case is k < n , when a point x ∈ U is called regular if rank  kxJ f =)( . We will 

call geometrical pattern any set of type )0(1−=Γ f , i.e. }0)(,,0)(|{ 1 ==∈=Γ xfxfUx k… , or finite unions 
of such sets of points, supposed regular. These sets generalize alike plane curves, surfaces, hypersurfaces and 
differentiable manifolds; see [9]. 

If a ∈ U, T
naaa ),,( 1 …=  is fixed („point of observation”) and Γ  is a geometrical pattern as above, 

following [5; 10]. We define the distance  

||)()(||),( afaJa f ⋅=Γδ +  (euclidian norm).(2) 

Justification. Take k = 1 and T
nccc ),,( 1 …=  a nonnull constant vector. If ii

n

i

xcxf ,)(
1
∑
=

= , then for any 

na R∈ , acaf T ⋅=)( , hence T
f caJ =)(  and 2||||

)(
c
caJ f =+ . If )()( afaJap f ⋅−= + , then 

)(
||||

1
2 acc

c
ap T ⋅−−= . Thus 0)( =⋅= pcpf T  and the vector pa −  is normal to the hyperplane 

).0(1−=Γ f  To conclude with, ||||),( paa −=Γδ , as expected (Fig. 2). 

 
Fig. 2 

PROPOSITION 1. Suppose that nk <≤1 . Let Ua∈  be a regular point for a map kUf R→:  of 

class )(1 UC . If )0(1−=Γ f , )(aJJ f=  and TJJK ⋅= , then 2/11 ))()((),( afKafa T ⋅⋅=Γδ − . 

Proof. The rank of the matrix J is k, maximum; thus, K is nonsingular. Moreover, 1)( −+ ⋅⋅= TT JJJJ . 
Then by (2),  

=⋅⋅⋅=⋅⋅=⋅=Γδ +++++ )()()()(),(||)(||),( 22 afJJafafJafJafJa T  

)()()()( 11 afJJJJJJaf TTTT ⋅⋅⋅⋅⋅⋅⋅= −− . 

Since n
TT JJJJ I=⋅⋅⋅ −1)( , it will follow that )()()()()(),( 112 afKafafJJafa TTT ⋅⋅=⋅⋅⋅=Γδ −− . 
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4. GEOMETRICAL PATTERN OF REGRESSION  

Let nU R⊂  be an open set and Uaa N ⊂= },,{ 1 …A  be a finite set of points of observation. Let 
kUf R→: , nk <≤1  be a function of class 1C  such that the points Naa ,,1 …  are regular. For )0(1−=Γ f , 

define the “distance” [10] 

 2

1

),(),( Γδ=Γδ ∑
=

p

N

p

aA . (3) 

The main goal of this paper is to determine a suitable function f which minimize ),( Γδ A ; see fig. 3. 

 
Fig. 3 

Such a problem could have applications in Pattern Recognition, Robotics and Computer Vision [5]. 
The proposed solution is not unique and requires supplementary conditions. Our approximative solution 
applies the Gauss idea, by checking the unknown f in a parametrized family of functions, that could be 
polynomials or spline-functions. 

Let MR=Δ  be an open subset in a space of parameters and kUF R→Δ×:  be a map such that for any 
Δ∈λ , T

M ),,( 1 λλ=λ … , F determines a function of class 1C , kUf R→: , ),( λxFx6 . Suppose that 
there is a bijective correspondence between these functions and parameters. This is the case of polynomial 

functions of degree ≤ d, where nR=Δ  and ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
=

n
dn

M , as shown in §1; in that case, the function ),( Γδ A  

becomes a function of coefficients of the polynomials. In the case of linear dependence of parameters, one 
can impose some suplementary relations between parameters, without modifying solution. We will put the 
following condition : 

 k
T

pfpf

N

p

aJaJ I=⋅∑
=

)()(
1

. (4) 

Since the matrixes T
pfpf aJaJ )()( ⋅  are symetrical, positively semi – definite and nonsingular (to 

points pa  being regular for f), they are in fact positively definite. The same thing is valid for the matrix 

T
pfpj

N

p

aJaJC )()(
1

⋅=∑
=

 hence there is an orthogonal matrix )(RkMQ∈  such that k
T QCQ I=⋅⋅  and fQ  

will satisfy (4). Suppose now that the points of observation Naa ,,1 …  are „sufficiently near” of  Γ , in the 

sense that ||||),( pp aa ≅Γδ  , for any p. According to (3), 2

1

||||),( p

N

p

a∑
=

≅Γδ A . Finally, it is reasonable to 

assume that there are r linearly independent functions k
r U R→ϕϕ :,,1 …  of class )(2 UC , such that the 

unknown T
kfff ),,( 1 …=  of the problem is a linear combination of them. Thus, ∑

=

ϕ=
r

j
jiji pf

1

, ki ≤≤1 , 

where ijp  are real numbers to be determined. Matricially, ϕ= .TPf , where )()( Rrkij MpP ∈= . The 
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problem reverts to find the function f (i.e. P ), such that the sum ∑
=

N

j
paf

1

2||)(||  is minimum, with the 

restriction (4). In this case, ∑ ∑∑
= ==

⋅⋅=ϕ⋅⋅⋅ϕ=⋅=
N

j

N

j

T
p

tT
pp

T
p

N

j
p PAPaPPaafafaf

1 11

2 )(tr)()()()(||)(|| , 

where )()()(
1

Rr
T

pp

N

j

MaaA ∈ϕ⋅ϕ=∑
=

  is a symmetrical and positively semi – definite matrix. On the other 

hand, PaJaJPaJaJ T
pp

TT
pfpf ⋅⋅⋅=⋅ ϕϕ )()()()( ; moreover, by putting T

pp

N

p

aJaJB )()(
1

ϕϕ
=

⋅=∑ , the 

matrix )(RrMB∈  is known and the condition (4) becomes k
T PBP I=⋅⋅ . One can assume that the matrix 

PAPT ⋅⋅  is diagonal [indeed, it is symetrical and positively semi – definite, hence there is an orthogonal 
matrix )(RkMB∈ , i.e. k

TQQ I=⋅ , such that QPAPQ TT ⋅⋅⋅⋅ )()(  is diagonal; moreover, tr =⋅⋅ )( PAPT  
))((tr QPAQP T ⋅⋅⋅⋅=  and much more, k

T PBP I=⋅⋅  iff k
T QPBQP I=⋅⋅⋅⋅ )( . As such, P can be replaced 

by QP ⋅ ]. It remains to apply the following result from linear algebra [3, 10]. 
The above results can be synthesized in the following, algorithm for solving the already formulated 

problem ( see also [9]). 
PROPOSITION 2. Let nU R⊂  be an open set and Uaa N ⊂= },,{ 1 …A  be a finite set of observation 

points. In order to determine a function kUf R→:  such that the geometrical pattern )0(1−f  is the nearest 

to the set A  do apply the next steps: 

Step 1. Choose r linear independent functions k
i U R⊂ϕ : , ri ≤≤1  of class )(2 UC . 

Step 2. Determine the matrices )(, RrMBA ∈ , T
pp

N

p

aaA )()(
1

ϕ⋅ϕ=∑
=

 and T
pp

N

p

aJaJB )()(
1

ϕϕ
=

⋅=∑ , 

where T
r ),,( 1 ϕϕ=ϕ … . 

Step 3. Consider k proper versors kxx ,,1 …  of the sheaf BA α−  and )||( 1 kxxP …=  verifies the 

relation k
T PBP I=⋅⋅ . 

Step 4. The components kff ,,1 …  of the checked function are linear combinations of the functions 

rϕϕ ,,1 … ; more exactly, Pff rk ).,,(),,( 11 ϕϕ= …… . 

Note. As soon as the matrices A and B are determined after choosing iϕ , the algoririthm requires 

)( 3rO  operations. 

5. CONCLUSIONS 

Lagrange interpolation and the Gauss regression are widely used in processing numerical data. In the 
same time, an important problem is to fit a given set of points and determine a regular geometrical object 
which is the nearest to some points of observation, (in the sense of a distance defined in terms of the 
pseudoinverse of jacobian matrices). In this paper we propose such an approach and suggest that this 
geometrical object could be used to follow the time evolution of the information near the set of observation 
points. It remains to be seen if this construction is stable and feasible for applications. An algorithm to 
minimize the distance is formulated in Proposition 2. 
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