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Abstract. A nonlinear PDE-based image restoration approach is described in this article. The proposed 
filtering technique is based on a novel fourth-order diffusion model. Unlike many other fourth-order 
PDE denoising schemes, this nonlinear model provides an optimal trade-off between noise removal, 
image detail preservation and avoiding of undesired effects. A rigorous mathematical investigation of 
the well-posdedness of this differential model is also performed. Then, a consistent and fast 
converging numerical approximation scheme, based on the finite-difference method, is constructed for the 
fourth-order PDE. The denoising method proposed here outperforms not only the conventional image 
filters and those based on linear PDEs, but also many state of the art nonlinear second and fourth 
order diffusion-based techniques, as resulting from the method comparison. 
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1. INTRODUCTION 

The nonlinear partial differential equation (PDE) based techniques have been representing the main 
instrument for digital image denoising and restoration in the last century quarter. Since the conventional two-
dimension image filters and the linear PDE-based denoising schemes are generating the blurring effect that 
destroys the edges and other image details [1], the nonlinear PDE models represent a much better smoothing 
solution [2]. They produce a directional diffusion that is degenerate along the gradient direction, having the 
effect of filtering the image along but not across its edges. The boundaries and other important features are 
thus preserved during the restoration process [2]. 

Nonlinear diffusion-based image restoration models can be divided into second- and fourth-order PDE-
based approaches. The second-order PDE models have been widely used for restoration and scale-space image 
analysis since Perona and Malik elaborated their influential anisotropic diffusion scheme [3]. Because these 
nonlinear differential models can be obtained from variational problems, numerous variational denoising schemes 
have been developed since Rudin, Osher and Fetami introduced their TV Denoising technique [4]. 

While the second-order PDE-based techniques provide an effective deblurring, they could also produce the 
undesired staircase (blocky) effect, representing creating of flat zones separated by artifact boundaries [5]. 
So, a lot of improved PDE and variational models derived from Perona-Malik and TV Denoising schemes, such 
as the Split Bregman methods, have been proposed to solve this problem [2, 6–8]. We also developed such 
variational and nonlinear second-order anisotropic diffusion models that reduce considerably the image staircasing, 
which are disseminated in our past papers [9–12]. 

However, the nonlinear PDE schemes based on fourth-order diffusion represent a much better solution 
for staircase effect removing. Such a popular fourth-order PDE restoration model is that developed by Y.L. You 
and M. Kaveh [13], which approximates the observed image with a piecewise harmonic one. Another influential 
restoration approach based on fourth order diffusions was proposed by M. Lasaker, A. Lundervold and X. Tai [14]. 

While these fourth-order PDE denoising methods remove the Gaussian noise successfully and overcome 
the blocky effect, they may also generate image blurr and speckle noise. Many improved fourth-order PDE 
schemes that avoid these unintended effects have been elaborated in the last decade [15]. We also developed 
some fourth-order diffusion-based restoration schemes that improve You-Kaveh model [16, 17].  
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Here we consider a novel fourth-order nonlinear PDE-based image denoising technique that is totally 
different from You-Kaveh method. It performs an effective noise removal and overcomes all undesired effects. 
Also, the proposed approach outperforms some state of the art fourth-order PDE restoration models. 

Our nonlinear diffusion approach is detailed in the following section. A rigorous mathematical investigation 
is performed on the well-posedness of this fourth-order PDE in the third section. Then, a robust finite difference-
based numerical approximation scheme developed for this PDE model is described in the fourth section. The 
fifth section of this paper describes our restoration experiments and method comparison. This article finalizes with 
a conclusion section, some acknowledgements and a bibliography. 

2. NOVEL FOURTH-ORDER DIFFUSION-BASED MODEL 

In this section we propose a novel differential model for image denoising and restoration. The proposed 
nonlinear diffusion-based restoration model is composed of a fourth-order partial differential equation with some 
boundary conditions. Thus, our PDE-based smoothing technique is expressed as following: 
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where function u represents an evolving image, parameters ( ]1,0,, ∈λγξ , Ω∂  is the frontier of domain 
2R⊆Ω , 2∇=Δ  is the Laplacian operator, u∇  is the gradient magnitude, 0u  is the initial image corrupted by 

Gaussian noise and 1u  is a velocity modification of it. The diffusivity function [ ) ( )∞→∞ ,0,0:uϕ  has the form: 
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where     

 ( ) εημψ −∇= uu )( , (3) 

coefficients δ , ( )5.1,0, ∈ηα , [ )5,2,, ∈εβk  and ( )⋅μ  returns the average value of the argument.  
The diffusivity function given by (2)–(3) is properly chosen for an effective restoration process. 

Obviously, it is positive: .0,0)( ≥∀> ssuϕ  Also, it is monotonically decreasing, since 
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and it converges to zero, since  0)(lim =
→∞

sus
ϕ , which is another denoising-related condition [2, 3]. Also, 

the function )( suϕ  is bounded, since ( ) 0,:0, 2121 ≥∀≤≤≥∃ sbsbbb uϕ . It also represents a Lipschitz 
function, because its derivative )(' suϕ  is bounded. These conditions are very important for the mathematical 
treatment of the proposed model that is performed in the third section and is related to its well-posedness. 

The optimally filtered image u is achieved by solving the PDE model expressed by (1), representing its 
solution. Therefore, we have to investigate the existence and the uniqueness of such a solution for this fourth-
order PDE scheme. Thus, the well-posedness of the proposed nonlinear diffusion model will be treated in the next 
section. So, we demonstrate that this partial differential equation admits a unique and weak solution that 
corresponds to the restored image. Also, our diffusion scheme has the localization property, its solution propagating 
with finite speed [18]. In the fourth section, one performs a discretization of the PDE model to approximate 
that solution. 
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3. MATHEMATICAL INVESTIGATION OF THE PDE SCHEME 

A mathematical treatment of the PDE model (1) is performed in this section. We say that a function 
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Let us consider a bounded positive continuous function a=a(t, x, y) and study the following equation:  
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Let us denote by ( ) [ ]')()(: 2 ADLADA →Ω⊂  the operator ( )ADvuauvdxdyvdxdyuavAu ∈∀+ΔΔ= ∫∫
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where { }Ω∂=Δ=∇=Ω∈= on  0);()( 2 uuuHuAD   and [ ]')( AD  is the dual space with respect to 

the pivot space )(2 ΩL . We see that )(,0, ADuvAu ∈∀≥ , so A is monotone. Also, by the Schwartz 
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the solution u, and the function a. It depends only on the parameters λγξ ,,  and the L2 - norm of 0u  and 1u . 
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with 03 >C  depending on λγξ ,, , 
20u  and 

21u . Now, by multiplying equation (5) by tu , and 
integrating over [0, t] one obtains: 
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the weak solution to (1). To this end, let us consider the sequence ( ))(;,0)( ADTLu nn ∈ , defined as:  
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Equation (10) has a solution for all Nn∈ , by replacing a to ( )11 −∇
− nu u

n
ϕ . This follows by standard 

existence of the results for linear hyperbolic equation with time-dependent coefficients. By using (8), 

2
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Making use of the mentioned convergence relations, the Lipschitz continuity of uϕ , we may pass (11) 
to the limit ( ∞→n ) to arrive to the fact that u satisfies the third condition in (4), concluding so that u 
represents a weak solution to (1).  

4. NUMERICAL APPROXIMATION ALGORITHM 

Now we intend to approximate that unique and weak solution of the fourth-order PDE, whose existence 
has been demonstrated in the previous section. Therefore, the continuous nonlinear diffusion-based model is 
discretized by applying the finite-difference method [21]. A consistent numerical approximation scheme is 
thus constructed for this mathematical model. So, let us consider a space grid size of h and a time step tΔ . 
The space and time coordinates are quantized as follows: 

 x = ih, y = jh, t = n∆t, { } { } { }0, .., , 0, ., , 1, .., .i I j J n N∀ ∈ ∈ ∈  (12) 

The fourth-order diffusion equation given by (1) can be rewritten as: 
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Then, the equation (13) is discretized by using the finite differences [21]. The component 
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is computed using (2). Then, we apply the Laplacian and get the discretization of the second component: 
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If we consider h = 1 and 1=Δt , the next implicit numerical approximation scheme is obtained for (13): 
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where ( ) n
ji

n ujiu ,, = . This iterative scheme is applied on the evolving image for each { }Nn ,...,1∈ . The restoration 
process starts with 0

01 uuu ==  representing initial [ ]JI ×  image corrupted by Gaussian noise. Our explicit 
numerical approximation scheme is consistent to the nonlinear diffusion model (1). For the optimal values of 
parameters λγξ ,,  specified in (19), it also converges fast to the approximation of its weak solution, 
representing the optimal image denoising, 1+Nu , the number of iterations, N, becoming quite low.  

5. EXPERIMENTS AND METHOD COMPARISON 

We have successfully tested the proposed nonlinear diffusion-based smoothing technique on hundreds 
of images affected by Gaussian noise. Some important image collections, such as the Volume 3 of the USC - 
SIPI database have been used in our denoising experiments. We have determined on a trial and error basis, 
through empirical observation, the next set of parameter values that provide an optimal image enhancement: 
 0.5, 0.8, 0.7, 0.2, 1.4, 0.3, 3, 4, 3, 14.k Nδ = ξ = γ = λ = α = η = = β = ε = =  (19) 

The performed filtering experiments prove that our PDE-based denoising approach removes 
successfully the noise, while preserving some essential image details, such as the edges. It overcomes the 
undesired effects, like blurring, staircasing [5] and speckle noise [13]. The proposed denoising technique 
executes very fast, given the low value of the iterations number, N. Its running time is less than 1 second. 
The performance of the restoration algorithm has been assessed by using performance measures like Peak 
Signal-to-Noise Ratio (PSNR), Norm of the Error (NE) and Structural Similarity Image Metric (SSIM) [22]. 

The described nonlinear fourth-order PDE model outperforms numerous state-of-the-art restoration 
methods, producing much better values for the performance parameters. Our restoration approach performs 
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better than classic 2D image filters, such as Average, Median, Gaussian 2D, Wiener [1] and more effective 
filters like LLMMSE – Lee [23], and the linear PDE-based smoothing approaches, because it overcomes the 
unintended blurring effect and preserves essential features. Also, unlike those filtering methods, the proposed 
smoothing technique has the localization property. Also, our diffusion-based denoising method outperforms 
some influential nonlinear second-order PDE restoration schemes, such as both versions of the Perona-Malik 
anisotropic diffusion model and other derived algorithms [2,3], and the TV Denoising [4]. Thus, it provides a 
more effective Gaussian noise removal and executes much faster. Also, unlike these second-order differential 
models, it can succesfully overcome the staircase effect [5]. The described restoration technique is also more 
effective than some state of the art nonlinear fourth-order PDE denoising models. Our PDE-based filtering 
model performs better than some popular nonlinear fourth order PDE schemes, such as the isotropic 
diffusion model You-Kaveh [13] and the LLT denoising algorithm [14]. Besides avoiding the blurring effect 
and providing a better edge preservation than those techniques, our filtering algorithm removes successfully 
the unintended speckle noise [24] and operates much faster than them. The PSNR values achieved by the 
proposed technique and other restoration approaches mentioned here are registered in the following table. 
Our fourth-order diffusion model gets higher PSNRs than the other conventional and PDE-based approaches.  

Some restoration results generated by these schemes are displayed in Fig. 1. Original [ ]512 512×  Lenna 
image is depicted in (a). It is corrupted with an amount of Gaussian noise characterized by μ  = 0.21 and var 
= 0.02, the degraded image being displayed in (b). The smoothing results produced by [ ]3 3×  2D filters, such 
as classic Gaussian filter, Average and Wiener, are displayed in (c) – (e). The LLMMSE-Lee based filtering 
result is depicted in (f). The restoration results provided by the PDE-based approaches are displayed in (g) – 
(j): Perona-Malik scheme, TV Denoising, You-Kaveh model and the technique proposed here. One can 
observe that image (j), marked in red and representing our restoration result looks better than other outputs. 
Also, the unintended denoising effects, still visible in (c) to (i), are almost completely removed in (j). 

Table 1 
PSNR values provided by several methods 

This PDE 
scheme 

Average Gaussian Wiener LLMMSE-Lee Perona-Malik TV Denoising You-Kaveh 

28.05(dB) 25.43(dB) 25.27(dB) 26.51(dB) 27.63(dB) 26.84(dB) 26.79(dB) 27.31(dB) 

 
Fig. 1 – Restoration result achieved by various filtering techniques. 



 Tudor BARBU, Ionuț MUNTEANU 7 114 

6. CONCLUSIONS 

A novel PDE-based image restoration technique has been described in this article. The proposed 
denoising approach is based on a nonlinear fourth-order diffusion-based model that represents our main 
contribution. This original fourth-order PDE scheme has a much different form than well-known You-Kaveh 
model and other derived fourth-order PDEs, uses a new diffusivity function and special boundary conditions. 

The rigorous mathematical treatment of the differential model represents another contribution of our 
work. We demonstrate that the diffusivity function is properly selected and the PDE scheme is well-posed, 
admitting a unique and weak solution. Then, a consistent fast-converging numerical approximation scheme is 
developed for this fourth-order PDE model. We apply the finite-difference method to get an explicit iterative 
discretization scheme for the continuous model. Its effectiveness is proved by the results of our experiments 
and method comparison. It achieves an optimal trade-off between noise reduction, feature preservation and 
unintended effect removal. Our technique outperforms the conventional filtering solutions, since it avoids the 
blurring effect. It performs better than many second-order PDE-based algorithms, by running faster and 
overcoming the staircasing, and outperforms the You-Kaveh like fourth-order PDE denoising models, by 
providing a better deblurring and speckle removal. We will focus on further improving this denoising 
technique during our future research. So, novel variants of the diffusivity function will be considered by us. 
Also we intend to integrate this PDE-based restoration scheme into more complex image enhancement 
solutions, such as some effective hybrid filtering models incorporating both second- and fourth-order PDEs. 
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