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Abstract. We obtain an integral representation for the solution of the Poisson equation with Neumann
boundary condition on a compact Klein surface.
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1. INTRODUCTION

Any compact Klein surface can be completed by the doubling process to a symmetric closed Riemann
surface. We obtain harmonic functions on a Klein surface by adding together a pair of harmonic functions of
the symmetric Riemann surface whose singularities lie at conjugate points. We construct an analogue of a
Neumann function on a Klein surface and express the solution of the Neumann problem for the Poisson
equation on a Klein surface in terms of this basic functional. We present an application to the Mobius strip.

2. PRELIMINARIES

A compact Klein surface is a pair (X, A) , consisting of a compact surface X and a maximal dianalytic
atlas A on X . Given a compact Klein surface X, its canonical (Riemann) double cover X admits a fixed
point free symmetry K, such that X is dianalytically equivalent with Xc / <k>, where <k> is the group
generated by K with respect to the usual composition of functions. Conversely, given a pair (Xc,k)
consisting of a Riemann surface X and a symmetry K, the orbit space X. / <k> admits a unique structure
of Klein surface, such that w: X — X¢ / <k> is a morphism of Klein surfaces. The pair (XC, k) is called a
symmetric compact Riemann surface (see [4, 7]). Forwards, we identify X with the orbit space X / ( k>.

Let Aut( H ) be the group of automorphisms of the upper half plane H and Aut* ( H ) be the subgroup
of orientation preserving elements in Aut(H ) A discrete subgroup T" of Aut(H) it is a NEC group if the
quotient H/T'is compact. A NEC group I' is said to be a Fuchsian group if ' < Aut* ( H ) . Let

I''=I'mAut* ( H ) be the canonical Fuchsian subgroup of T".

The next theorem associates a surface NEC group with a compact Klein surface X (see [4]).
THEOREM 2.1. Let X be a compact Klein surface of algebraic genusg>2. Then there exists a

surface NEC group T such that X and H /F are isomorphic as Klein surfaces. Moreover, the double cover
X isisomorphic withH/T™* .

A common realization of a compact Klein surface X is a region in the complex plane bounded by a
finite number of analytic Jordan curves (see [7]).

A set G is called symmetric if k(G) =G. A function f defined on a symmetric set is called a symmetric
function if f =1fok.
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A symmetric metric on X is defined by do(2) =%(|dz| +|dW|), where W= k(Z) ,2€ Xc. Then two

symmetric curves have the same length with respect to the metric do (see [6]). The induced metric dX on
X is defined by

dE(E):dc(z): do(k(z)), ze X, z=7(2).

Let vy be a o- rectifiable Jordan curve, parameterized in terms of the arc o- length. Therefore, y:
zZ= Z(S):X(S)+iy(s), Se[O,I], where | is the o- length of y. We consider the corresponding unit

normal vector N, = ﬂ,—% .
do do
The Klein surfaces X and Xc / < k) are dianalytically equivalent, therefore we can identify {Z,k(z)}
with z= Tc(z). Thus Klein surfaces have a lot of applications in quantum physics, chemistry and biology

which correspond to similar applications for symmetric Riemann surfaces (see [2, 3, 8]).
3. THE NEUMANN PROBLEM ON SYMMETRIC REGIONS
Let QQ be a region of X bounded by a finite number of o -rectifiable Jordan curves. Given F a

continuous real-valued function on Q and G a continuous real-valued function on 0Q , we consider the
problem

AU =F on Q
a—U=GonaQ' (1
ong

We define D=r" (Q) , f=Fomon D and g=Gom on 0D . Since Kis an antianalytic involution,
without fixed points and mok =1, we obtain that D is a symmetric region bounded by a finite number of
o - rectifiable Jordan curves on X., f is a symmetric continuous real-valued function on D and gis a
symmetric continuous real-valued function on the boundary oD .

Because the Klein surface X is dianalytically equivalent with X / <k> , the problem (1) is equivalent
with the problem

Au=f on D

2
o gondD’ @
on,
where D is a symmetric region.
In this paper we only consider solutions which are in the class C? ( D) NC! (6D) .
Given U and v two functions, parameterized by X(S) and y(s) , where Sis the arc o - length, then

the Green’s second identity in terms of do becomes

J'J(uAv—vAu)dxdy = ajl;[u% —vaaTu]dcs

Remark 3.1. By the Green’s formula for the integral of the Laplacian in terms of do, a necessary
condition for the existence of a solution to the problem (2) is

jgdcs:ﬂ foixdly .
oD D
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PROPOSITION 3.2. If the problem (2) admits a solution, then it is unique up to an additive

constant.
Proof. Given U, and U, solutions of the problem 2) if U=U, —U,, then U is harmonic on D and

ou . o
——=0 on 0D . Applying Green’s first identity, we get ”(u + u dXdy 0, thus uis constant on D.

n, 5

PROPOSITION 3.3. The solution of the problem (2) is a symmetric functionon D.

Proof. Let u be a solution of the problem (2) We define fJ:B—)R, by G:%(u+uok). By

hypothesis, f=fok on D, thus Aa:%(f+f0k)=f0n D. Also, since g=geck on 0D, then

ou _ au ~ . iy :
n :6_ =g on 0D . Thus U is also a solution of the problem (2) . By Proposition 3.2, there is a constant
nG nG

c such that U=U+C on D. Thus Uock=U+2Con D and using the symmetry of the region D, we obtain
U=Uok+2c on D.Hence c=0, thatis uck=u onD.

4. THE SYMMETRIC NEUMANN FUNCTION

The next theorem is an analogue of the Cauchy’s integral formula for harmonic functions in terms of
the metric do .

PROPOSITION 4.1. Let D be a symmetric region bounded by a finite number of o -rectifiable Jordan
curvesand let u be a harmonic function in D and continuous on its boundary oD . Then

1 ou oo
U(C)—z—na [ aT_UE]dG’ (3)

where ¢ isafixed pointinsideD, ze D and v(z§)=-In|z-¢|.
Proof. Let C. be a positively oriented circle of radius I' , centered at { and let D, =D — A, , where A,
is the closed disk bounded by C, . Applying Green’s second identity over D,, for the harmonic functions

uand U=U(Z;C;), we obtain

Then, by the compatibility property, juj—u do=—Inr J aa—udc =0 and, by the mean value property for
n

(2 o
r CT

harmonic functions, we get _[ u:—udc =-2mu(§), see [5].
n

(2
r

Let  be a point inside D. A Neumann function Np (Z;C) for the region D, with singularity at £, in

terms of the metric do , is the function
Np(z8)=v(zC)-N(zL), zeD, z#C,

where h( z (;) is a solution of the following Neumann problem in terms of the metric do
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Ah(z()=0,zeD
oh oo 2n ;
6T(Z’Q)_6T(Z’C)+|_’ ze oD

o [}

where | = '[dc is the o - length of oD, (see [5]).
)
Remark 4.2. The boundary value of the normal derivative of the Neumann function is a constant equal

to _2|_n , where | is the o-length of oD .

PROPOSITION 4.3. Let D be a symmetric region bounded by a finite number of o- rectifiable
Jordan curves. If u isharmonicin D, then, up to an additive constant,

1 ¢ ou
U(C):E 8T(Z)ND(Z,C)dG, gED (4)
7o
Proof. Let C, be a positively oriented circle of radius I' , centered at £ and let D, =D — A,, where A,
is the closed disk bounded by C, . Using Green’s second identity, we get

oh ou
—(zC)-h(zl)— do=0
[ 20 -(z0) 22 -0, ®
where %z%Jrzl—n on 0D . Dividing (S)by 21 and adding it to formula (3) it results
1 ¢ ou 1
=— | —(z)Np(z&)do+= do .
u(¢) 2755[,5”0(2) 0 (z0) G+|5‘LU(Z) c

. . . . 1
Thus U is determined uniquely up to the additive constant T '[ u(z)dc.
D

Let £ be a point inside D. Let N|(3k) (Z;a) be the function defined by

Nék)(z;g)zé[ND(z;gﬁ No (2k(¢))]. ze D\[C.K(Q)}.

where N (Z; k(C)) is a Neumann function for the region D, with singularity at k(C) and é = {C, k(C)} .

From the definition of a Neumann function, it follows that
K57 1 =
N5’ (28) =5 [v(z8)+v(zk(Q))]-h(zE). 2%, z2k©). ©6)

where h,is a harmonic function on D and it satisfies

0 =\ 1] 0 0 2
(=)= (=0 - S (k(0) [+ 27 or 2D

Therefore, N,(Dk) (Z,(i) is a harmonic function of Z in D\{C,k(@)} , with singularities at { and k((;)

Z;&) = _2|_n’ for all Zon the boundary oD .

aN(k)
anz (

and
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PROPOSITION 4.4. If Dis a symmetric region, then the function N (z,(;) is symmetric with

respectto zon D i.e. for every ze D,
K (-5 k =
NE (zE)=NE (k(2):E).
Proof. Let h* (,(;) be a harmonic function in D, such that

oh* 1 0 0 21
E(Z;C)Z—E[£1n|z—€|+aln|k(2)—€0+l—, zedD.

(Z C) 2:* ( ( );C), for every zedD . By Proposition 3.3, h* (,C) is a symmetric function.

(o2

Hence the function

M (28) =3 [o(z6) +o(K( )g)] h (6)

(zg)_—z— So, N{ (z,(;) and MU (z,(;)

is a symmetric function, harmonic in D\ {Q,k((;)} and

are solutions of the same Neumann problem, then by Pr0p0s1t10n 3.2, there is a constant Csuch that

(Z Q) (Z C)+C Since M (Z,Q) is a symmetric function, we obtain that Ng()(z;&)is also a

symmetric function.

The function N (Z,C) is called a symmetric Neumann function for the region D, with singularity at

aJ where C = {C,k(@)} .

5. THE NEUMANN PROBLEM ON THE DOUBLE COVER

First, we express the solution of the Neumann problem for harmonic functions in terms of do as a line
integral involving the boundary function and a symmetric Neumann function.

THEOREM 5.1. Let D be a symmetric region bounded by a finite number of o -rectifiable Jordan
curves and g be a symmetric, continuous function on oD . If uis harmonic inD andgis its normal

derivative on oD , then up to an additive constant,

=_I 0 (z6)+Np (zk(¢))|do, €D, %)
. . . _u(g)+u(k(g)) . . .
Proof. Since K is an involution of D, the function — 5 is a symmetric function on D. By
Proposition 4.3, we have
1 1
u(g):EJDg(z)ND(Z,Q)dcs+|—a'[)u(z)dc

and

u(k(¢))==— g(Z)ND(Z,k(C))dG-i-II Ju(z)dc.

oD oD
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The symmetry of g implies

u(¢)+u(k(c)) :LI o(2 Np (z:£)+Np (z:k(¢))

2 27 o 2

dc+lju(z)dc5
IBD

By Proposition 3.3, uis a symmetric function on D, then the left side of the last equality is U(C) and we

. 1
obtain u( _—I (z8)+N, (Z’k(c))]dGJrl_;Du(Z)dG'
Next we ﬁnd the solution of the Poisson equation with zero boundary values of the normal derivative
in terms of do.
THEOREM 5.2. Let D be a symmetric region bounded by a finite number of o -rectifiable Jordan
curves. Let f be a symmetric, continuous function on D. There is a unique symmetric function

ueC?(D)NC'(oD), with zero boundary value of the normal derivative, such that Au = f onD . Moreover,
for all L € D we have,

u((;)z——” f (z)[ND(z;§)+ ND(z;k(Q))]dxdy, Z=X+iy. ®)

D
Proof. By hypothesis, u =—— J I Au ZQ dxdy, £eD (see [5]). The rest of the proof

follows by arguments similar to those in the proof of Theorem 5.1.
We conclude with the formula for the solution of the problem (2) on a symmetric region.

THEOREM 5.3. Let D be a symmetric region bounded by a finite number of o -rectifiable Jordan
curves, let f be a symmetric, continuous function on D and let g be a symmetric, continuous function on

oD . If uisa solution of the problem(2), then up to an additive constant
H ZC dxdy+—-[ Z,C)dcs leD. )

Proof. By definition, N (Z C) is a symmetric Neumann function for the region D, with the

singularities at { and k((;) . We combine the solution (7) of the Neumann problem for harmonic functions,

with the solution (8) of the Poisson equation with zero boundary data.

6. THE NEUMANN PROBLEM ON THE ORBIT SPACE

Let QO be a region bounded by a finite number of & - rectifiable Jordan curves. The Klein surface X is
the factor manifold of the symmetric Riemann surface X. with respect to the group <k> Then, Q is
obtained from a symmetric region D by identifying the symmetric points.

Let i be a point inside Q. A Neumann function N, (E,E,) for the region Q, with singularity at Zf, is
defined by

No (z8)=NE (28) =Ng? (k(2):8). z=n(z)e. (10)

Remark 6.1. By Proposition 4.4, it results that N, (i,(i) is well defined on X .
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~ = = oN
Thus N, (Z;C) is a harmonic function on Q\{C} , which has a constant normal derivative a—Q on the

boundary 0Q and has a logarithmic pole at the point (N; .

Next we derive the solution of the problem (1) on the region Q.

THEOREM 6.2. Let F be the continuous real-valued function onQ, defined by therelation f =Fon
and let G be the continuous real-valued function ono<Q2 , defined by the relationg =Gon. Then, up to an

additive constant, the solution of the problem (1) is the function U defined by the relation u=U o1, where

7 is the canonical projection of X onX and uis the solution (9)of the problem (2)on the symmetric

region D.
Proof. The symmetry of the function f on D, yields

AU (2)=Au(0)= £(9) = (k(¢))=F(Z).

forall CeQ, where { = () . Also, the symmetry of the function g on oD, yields

%(g) =§T‘i(c) =9(¢)=9(k(¢))=6(Z).

for all a_, € 0Q. Then, up to an additive constant, the function U defined on Q by
U(&)=u(©)=u(k(c).

for all Z; in Q, is the solution of the problem (1) .

7.NEUMANN FUNCTION FOR THE MOBIUS STRIP

For the Mdbius strip Mg , the orientable double cover is the annulus

Z\RZ{ZEC‘lS|Z|S R},
R

—

where the points zand k(Z)=—= are identified (see [7]). The corresponding symmetric metric
V4

do= l[1 + Lz]|dz| defines a structure of Riemann surface on Ar , with respect to which the mapping K is

2

an antianalytic involution, without fixed points. The orbit space ZR/ <k> carries a unique dianalytic structure

on MR which makes the canonical projection & ‘AR > Mg dianalytic.
By Theorem 6.2, to solve the Neumann problem on the Mobius strip we need to determine a symmetric
Neumann function for Ag.

THEOREM 7.1. A symmetric Neumann function for Ay is

-n

Ngg(z;&):uiip"*(—ﬁ)). o+ () —cosn(6-a)— (11)

on e R+ R 4 (_R)—n
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lei(eﬂr) _ el
p

b

—lln p€? — rei“| —lln
2 2

where &:{g,—%}, C=re*, iR< r<R, z=pe"“, iR<p< R and Cisan arbitrary constant.

Proof. A symmetric Neumann function N(AI;) (Z,&) for Ay with singularities at £ and k(C) is given by
(6), where D= Ag. Since

on on | 2

R © 0AR  © 0AR

.[ ohy (Z;é)dcz J a—U(Z;Q)dcs+2—n I do=0,
A A

0

the compatibility condition is satisfied.
By Proposition 3.3, it follows that h, is a symmetric function on Ay. Since the function hy is also

harmonic on Ay, for z=pe'® € A;, we have

h, (peie;i) =a,+ Z[p“ + (—p)_nJ(ocn cosnB + B, sinnb), (12)
n=1
where the coefficients

1 rm+(-r)"
Oy =——" cosha, n>1
2n R+ |:Rn—1 +(_R)—n—l:|

and

1 o+ (-r)" ,
By=——- sinha, N>1
2Nn Rn+l[Rn—1 +(_R)*”*1:|

are determined from the Fourier expansion of <I)(Z) ZSThS(Z,(:) on |Z| = R. Then plugging (12) in (6) we

C

achieve (11), where C=—q,.
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