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Abstract. We obtain an integral representation for the solution of the Poisson equation with Neumann 
boundary condition on a compact Klein surface. 
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1. INTRODUCTION 

Any compact Klein surface can be completed by the doubling process to a symmetric closed Riemann 
surface. We obtain harmonic functions on a Klein surface by adding together a pair of harmonic functions of 
the symmetric Riemann surface whose singularities lie at conjugate points. We construct an analogue of a 
Neumann function on a Klein surface and express the solution of the Neumann problem for the Poisson 
equation on a Klein surface in terms of this basic functional. We present an application to the Möbius strip.  

2. PRELIMINARIES 

A compact Klein surface is a pair ( ),X A , consisting of a compact surface X and a maximal dianalytic 
atlas A  on X . Given a compact Klein surface X , its canonical (Riemann) double cover CX  admits a fixed 
point free symmetry k , such that X is dianalytically equivalent with CX k , where k is the group 

generated by k  with respect to the usual composition of functions. Conversely, given a pair ( ),CX k  

consisting of a Riemann surface CX  and a symmetry k , the orbit space CX k  admits a unique structure 

of Klein surface, such that : C CX X kπ →  is a morphism of Klein surfaces. The pair ( ),CX k  is called a 

symmetric compact Riemann surface (see [4, 7]). Forwards, we identify X with the orbit space CX k . 

Let ( )Aut H be the group of automorphisms of the upper half plane H and ( )Aut H+ be the subgroup 

of orientation preserving elements in ( )Aut H . A discrete subgroup Γ  of ( )Aut H  it is a NEC group if the 

quotient H Γ is compact. A NEC group Γ  is said to be a Fuchsian group if ( )Aut H+Γ ⊆ . Let 

( )Aut H+ +Γ = Γ∩  be the canonical Fuchsian subgroup of Γ .  
The next theorem associates a surface NEC group with a compact Klein surface X (see [4]).  
THEOREM 2.1. Let X  be a compact Klein surface of algebraic genus 2g ≥ . Then there exists a 

surface NEC group Γ such that X and H Γ are isomorphic as Klein surfaces. Moreover, the double cover 

CX is isomorphic with H +Γ . 
A common realization of a compact Klein surface X is a region in the complex plane bounded by a 

finite number of analytic Jordan curves (see [7]).  
A set G  is called symmetric if ( )k G G= . A function f defined on a symmetric set is called a symmetric 

function if f f k= .  
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A symmetric metric on CX  is defined by ( ) ( )1
2

d z dz dwσ = + , where ( )w k z= , Cz X∈ . Then two 

symmetric curves have the same length with respect to the metric dσ  (see [6]). The induced metric dΣ  on 
X is defined by 

( ) ( ) ( )( )d z d z d k zΣ = σ = σ , Cz X∈ , ( )z zπ= . 

Let γ  be a σ - rectifiable Jordan curve, parameterized in terms of the arc σ - length. Therefore, :γ  
( ) ( ) ( )z z s x s iy s= = + , [ ]0,s l∈ , where l  is the σ - length of γ . We consider the corresponding unit 

normal vector ,dy dxn
d dσ

⎛ ⎞= −⎜ ⎟σ σ⎝ ⎠
. 

The Klein surfaces X  and CX k  are dianalytically equivalent, therefore we can identify ( ){ },z k z  

with ( )z z= π . Thus Klein surfaces have a lot of applications in quantum physics, chemistry and biology 
which correspond to similar applications for symmetric Riemann surfaces (see [2, 3, 8]). 

3. THE NEUMANN PROBLEM ON SYMMETRIC REGIONS 

Let Ω  be a region of X bounded by a finite number of σ -rectifiable Jordan curves. Given F a 
continuous real-valued function on Ω  and G  a continuous real-valued function on ∂Ω , we consider the 
problem 

on 

on 

U F
U G
nΣ

Δ = Ω⎧
⎪
∂⎨ = ∂Ω⎪∂⎩

. (1)

We define ( )1D −= π Ω , f F= π  on D  and g G= π  on D∂  Since k is an antianalytic involution, 
without fixed points and kπ = π , we obtain that D  is a symmetric region bounded by a finite number of 
σ - rectifiable Jordan curves on CX , f  is a symmetric continuous real-valued function on D  and g is a 
symmetric continuous real-valued function on the boundary D∂ .  

Because the Klein surface X is dianalytically equivalent with CX k , the problem ( )1  is equivalent 
with the problem  

on 

on 

u f D
u g D
nσ

Δ =⎧
⎪
∂⎨ = ∂⎪∂⎩

, (2)

where D  is a symmetric region.  
In this paper we only consider solutions which are in the class ( ) ( )2 1C D C D∩ ∂   
Given u  and v  two functions,  parameterized by ( )x s  and ( )y s , where s is the arc σ - length, then 

the Green’s second identity in terms of dσ  becomes 

( )
D D

v uu v v u dxdy u v d
n nσ σ∂

⎛ ⎞∂ ∂
Δ − Δ = − σ⎜ ⎟∂ ∂⎝ ⎠

∫∫ ∫ . 

Remark 3.1. By the Green’s formula for the integral of the Laplacian in terms of dσ , a necessary 
condition for the existence of a solution to the problem ( )2  is  

D D

gd fdxdy
∂

σ =∫ ∫∫ . 
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PROPOSITION 3.2. If the problem ( )2 admits a solution, then it is unique up to an additive  
constant.  

Proof. Given 1u  and 2u  solutions of the problem ( )2 , if 1 2u u u= − , then u  is harmonic on D  and 

0u
nσ

∂
=

∂
 on D∂ . Applying Green’s first identity, we get ( )2 2 0x y

D

u u dxdy+ =∫∫ , thus u is constant on D .  

PROPOSITION 3.3. The solution of the problem ( )2 is a symmetric function on D .  

Proof. Let u  be a solution of the problem ( )2 . We define :u D→ , by ( )1
2

u u u k= + . By 

hypothesis, f f k=  on D , thus uΔ = ( )1
2

f f k+ f= on D . Also, since g g k=  on D∂ , then 

u u g
n nσ σ

∂ ∂
= =

∂ ∂
 on D∂ . Thus u  is also a solution of the problem ( )2 . By Proposition 3.2, there is a constant 

c such that u u c= +  on D . Thus 2u k u c= + on D  and using the symmetry of the region D , we obtain 
2u u k c= +  on D . Hence 0c = , that is u k u=  on D .  

4. THE SYMMETRIC NEUMANN FUNCTION 

The next theorem is an analogue of the Cauchy’s integral formula for harmonic functions in terms of 
the metric dσ .  

PROPOSITION 4.1. Let D be a symmetric region bounded by a finite number of σ -rectifiable Jordan 
curves and let u  be a harmonic function in D and continuous on its boundary D∂ . Then  

( ) 1
2

D

uu u d
n nσ σ∂

⎛ ⎞∂ ∂υ
ζ = υ − σ⎜ ⎟π ∂ ∂⎝ ⎠

∫ , (3)

where ζ  is a fixed point inside D , z D∈ and ( ); lnz zυ ζ = − − ζ .  
Proof.  Let rC  be a positively oriented circle of radius r , centered at ζ  and let rD = D − rΔ , where rΔ  

is the closed disk bounded by rC  Applying Green’s second identity over rD , for the harmonic functions 

u and ( );zυ = υ ζ , we obtain  

rD C

u uu d u d
n n n nσ σ σ σ∂

⎛ ⎞ ⎛ ⎞∂υ ∂ ∂υ ∂
− υ σ = − υ σ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

∫ ∫ . 

Then, by the compatibility property, 
rC

u d
nσ

∂
υ σ =
∂∫ ln 0

rC

ur d
nσ

∂
− σ =

∂∫  and, by the mean value property for 

harmonic functions, we get ( )2
rC

u d u
nσ

∂υ
σ = − π ζ

∂∫ , see [5]. 

Let ζ  be a point inside D . A Neumann function ( );DN z ζ  for the region D , with singularity at ζ , in 
terms of the metric dσ , is the function  

( ) ( ) ( ); ; ;DN z z h zζ = υ ζ − ζ , z D∈ , z ≠ ζ , 

where ( );h z ζ  is a solution of the following Neumann problem in terms of the metric dσ   
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( )

( ) ( )

; 0,  
2; ; ,  

h z z D
h z z z D
n n lσ σ

⎧ Δ ζ = ∈
⎪
∂ ∂υ π⎨ ζ = ζ + ∈∂⎪∂ ∂⎩

, 

where 
D

l d
∂

= σ∫  is the σ - length of D∂ , (see [5]).  

Remark 4.2. The boundary value of the normal derivative of the Neumann function is a constant equal 

to 2
l
π

− , where l  is the σ -length of D∂ .  

PROPOSITION 4.3. Let D  be a symmetric region bounded by a finite number of σ - rectifiable 
Jordan curves. If u  is harmonic in D , then, up to an additive constant, 

( ) ( ) ( )1 ;
2 D

D

uu z N z d
nσ∂

∂
ζ = ζ σ

π ∂∫ , Dζ ∈ . (4)

Proof. Let rC be a positively oriented circle of radius r , centered at ζ  and let rD = D − rΔ , where rΔ  
is the closed disk bounded by rC  Using Green’s second identity, we get  

( ) ( ) ( ) ( ); ; 0
D

h uu z z h z z d
n nσ σ∂

⎛ ⎞∂ ∂
ζ − ζ σ =⎜ ⎟∂ ∂⎝ ⎠

∫ , (5)

where 
2  h

n n lσ σ

∂ ∂υ π
= +

∂ ∂
 on D∂ . Dividing ( )5 by 2π and adding it to formula ( )3  it results 

( ) ( ) ( )1 ;
2 D

D

uu z N z d
nσ∂

∂
ζ = ζ σ

π ∂∫ + ( )1

D

u z d
l
∂

σ∫ . 

Thus u  is determined uniquely up to the additive constant ( )1

D

u z d
l
∂

σ∫ .  

Let ζ  be a point inside D . Let ( ) ( );k
DN z ζ  be the function defined by  

( ) ( ) ( ) ( )( )1; ; ;
2

k
D D DN z N z N z k⎡ ⎤ζ = ζ + ζ⎣ ⎦ , z∈ ( ){ }\ ,D kζ ζ , 

where ( )( );DN z k ζ  is a Neumann function for the region D , with singularity at ( )k ζ and ( ){ },kζ = ζ ζ .  
From the definition of a Neumann function, it follows that 

( ) ( ) ( ) ( )( ) ( )1; ; ; ;
2

k
D sN z z z k h z⎡ ⎤ζ = υ ζ + υ ζ − ζ⎣ ⎦ , z ≠ ζ , ( )z k≠ ζ , (6)

where sh is a harmonic function on D  and it satisfies 

( ) ( ) ( )( )1 2; ; ;
2

sh z z z k
n n n lσ σ σ

⎡ ⎤∂ ∂υ ∂υ π
ζ = ζ + ζ +⎢ ⎥∂ ∂ ∂⎣ ⎦

, for z D∈∂ . 

Therefore, ( ) ( );k
DN z ζ  is a harmonic function of z  in ( ){ }\ ,D kζ ζ , with singularities at ζ  and ( )k ζ  

and 
( )

( ) 2;
k

DN z
n lσ

∂ π
ζ = −

∂
, for all z on the boundary D∂ .  



 Monica ROŞIU 5 

 

120 

PROPOSITION 4.4. If D is a symmetric region, then the function ( ) ( );k
DN z ζ  is symmetric with 

respect to z on D  i.e. for every z D∈ , 
( ) ( ) ( ) ( )( ); ;k k
D DN z N k zζ = ζ . 

Proof. Let ( );h∗ ⋅ ζ be a harmonic function in D , such that  

( ) ( )1 2; ln ln
2

h z z k z
n n n l

∗

σ σ σ

⎛ ⎞∂ ∂ ∂ π
ζ = − − ζ + − ζ +⎜ ⎟∂ ∂ ∂⎝ ⎠

, z D∈∂ . 

Therefore ( ) ( )( ); ;h hz k z
n n

∗ ∗

σ σ

∂ ∂
ζ = ζ

∂ ∂
, for every z D∈∂ . By Proposition 3.3, ( );h∗ ⋅ ζ is a symmetric function. 

Hence the function 

( ) ( ) ( ) ( )( ) ( )1; ; ; ;
2

k
DM z z k z h z∗⎡ ⎤ζ = υ ζ + υ ζ − ζ⎣ ⎦  

is a symmetric function, harmonic in ( ){ }\ ,D kζ ζ  and 
( )

( ) 2;
k

DM z
n lσ

∂ π
ζ = −

∂
. So, ( ) ( );k

DN z ζ  and ( ) ( );k
DM z ζ  

are solutions of the same Neumann problem, then by Proposition 3.2, there is a constant c such that 
( ) ( );k
DN z ζ = ( ) ( );k

DM z cζ + . Since ( ) ( );k
DM z ζ  is a symmetric function, we obtain that ( ) ( );k

DN z ζ is also a 

symmetric function.  
The function ( ) ( );k

DN z ζ  is called a symmetric Neumann function for the region D , with singularity at 

ζ  where ( ){ },kζ = ζ ζ .   

5. THE NEUMANN PROBLEM ON THE DOUBLE COVER 

First, we express the solution of the Neumann problem for harmonic functions in terms of dσ  as a line 
integral involving the boundary function and a symmetric Neumann function.  

THEOREM 5.1. Let D  be a symmetric region bounded by a finite number of σ -rectifiable Jordan 
curves and g  be a symmetric, continuous function on D∂ . If u is harmonic in D  and g is its normal 
derivative on D∂ , then up to an additive constant,  

( ) ( ) ( ) ( )( )1 ; ;
4 D D

D

u g z N z N z k d
∂

⎡ ⎤ζ = ζ + ζ σ⎣ ⎦π ∫ , Dζ ∈ . (7)

Proof. Since k is an involution of D , the function 
( ) ( )( )

2
u u kζ + ζ

 is a symmetric function on D . By 

Proposition 4.3, we have 

( ) ( ) ( ) ( )1 1;
2 D

D D

u g z N z d u z d
l

∂ ∂

ζ = ζ σ + σ
π ∫ ∫  

and 

( )( ) ( ) ( )( ) ( )1 1;
2 D

D D

u k g z N z k d u z d
l

∂ ∂

ζ = ζ σ + σ
π ∫ ∫ . 
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The symmetry of g implies  

( ) ( )( ) ( )
( ) ( )( ) ( )

; ;1 1
2 2 2

D D

D D

u u k N z N z k
g z d u z d

l
∂ ∂

ζ + ζ ζ + ζ
= σ + σ

π ∫ ∫ . 

By Proposition 3.3, u is a symmetric function on D , then the left side of the last equality is ( )u ζ  and we 

obtain ( ) ( ) ( ) ( )( ) ( )1 1; ;
4 D D

D D

u g z N z N z k d u z d
l

∂ ∂

⎡ ⎤ζ = ζ + ζ σ + σ⎣ ⎦π ∫ ∫ . 

Next we find the solution of the Poisson equation with zero boundary values of the normal derivative 
in terms of dσ .    

THEOREM 5.2. Let D be a symmetric region bounded by a finite number of σ -rectifiable Jordan 
curves. Let f be a symmetric, continuous function on D . There is a unique symmetric function 

( ) ( )2 1u C D C D∈ ∩ ∂ , with zero boundary value of the normal derivative, such that u fΔ = on D . Moreover, 
for all Dζ ∈  we have, 

( ) ( ) ( ) ( )( )1 ; ;
4 D D

D

u f z N z N z k dxdy⎡ ⎤ζ = − ζ + ζ⎣ ⎦π ∫∫ , iz x y= + . (8)

Proof. By hypothesis, ( ) ( ) ( )1 ,
2 D

D

u u z N z dxdyζ = − Δ ζ
π ∫∫ , Dζ∈  (see [5]). The rest of the proof 

follows by arguments similar to those in the proof of  Theorem 5.1.  
We conclude with the formula for the solution of the problem ( )2 on a symmetric region.  
THEOREM 5.3. Let D be a symmetric region bounded by a finite number of σ -rectifiable Jordan 

curves, let f be a symmetric, continuous function on D and let g be a symmetric, continuous function on 
D∂ . If u is a solution of the problem ( )2 , then up to an additive constant  

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1; ;
2 2

k k
D D

D D

u f z N z dxdy g z N z d
∂

ζ = − ζ + ζ σ
π π∫∫ ∫ , Dζ ∈ . (9)

Proof. By definition, ( ) ( );k
DN z ζ  is a symmetric Neumann function for the region D , with the 

singularities at ζ  and ( )k ζ . We combine the solution ( )7 of the  Neumann problem for harmonic functions, 

with the solution ( )8  of the Poisson equation with zero boundary data.  

6. THE NEUMANN PROBLEM ON THE ORBIT SPACE 

Let Ω  be a region bounded by a finite number of σ - rectifiable Jordan curves. The Klein surface X is 
the factor manifold of the symmetric Riemann surface CX  with respect to the group k . Then, Ω  is 
obtained from a symmetric region D  by identifying the symmetric points.   

Let ζ  be a point inside Ω . A Neumann function ( );N zΩ ζ  for the region Ω , with singularity at ζ  is 

defined by  

( ) ( ) ( ) ( ) ( )( ); ; ;k k
D DN z N z N k zΩ ζ = ζ = ζ , ( )z z= π ∈Ω . (10)

Remark 6.1. By Proposition 4.4, it results that ( );N zΩ ζ  is well defined on X .  



 Monica ROŞIU 7 

 

122 

Thus ( );N zΩ ζ is a harmonic function on { }\Ω ζ , which has a constant normal derivative 
N
n
Ω

Σ

∂
∂

 on the 

boundary ∂Ω  and has a logarithmic pole at the point ζ .  
Next we derive the solution of the problem ( )1 on the region Ω .  
THEOREM 6.2. Let F be the continuous real-valued function onΩ , defined by the relation f F= π  

and let G be the continuous real-valued function on∂Ω , defined by the relation g G= π . Then, up to an 
additive constant,  the solution of the problem ( )1 is the function U defined by the relation u U= π , where 

π is the canonical projection of CX  on X and u is the solution ( )9 of the problem ( )2 on the symmetric 
region D .  

Proof. The symmetry of the function f on D , yields  

( ) ( ) ( ) ( )( ) ( )U u f f k FΔ ζ = Δ ζ = ζ = ζ = ζ , 

for all ζ∈Ω , where ( )ζ = π ζ . Also, the symmetry of the function g on D∂ , yields  

( ) ( ) ( ) ( )( ) ( )U u g g k G
n nΣ σ

∂ ∂
ζ = ζ = ζ = ζ = ζ

∂ ∂
, 

 for all ζ∈∂Ω . Then, up to an additive constant, the function U defined on Ω  by  

( ) ( ) ( )( )U u u kζ = ζ = ζ , 

for all ζ  in Ω , is the solution of the problem ( )1 .  

7. NEUMANN FUNCTION FOR THE MÖBIUS STRIP 

For the Möbius strip RM , the orientable double cover is the annulus  

1
RA z z R

R
⎧ ⎫

= ∈ ≤ ≤⎨ ⎬
⎩ ⎭

C , 

where the points z and ( ) 1k z
z

= −  are identified (see [7]). The corresponding symmetric metric 

2
1 11
2

d dz
z

⎡ ⎤
⎢ ⎥σ = +
⎢ ⎥⎣ ⎦

 defines a structure of  Riemann surface on RA , with respect to which the mapping k is 

an antianalytic involution, without fixed points. The orbit space RA k  carries a unique dianalytic structure 

on RM  which makes the canonical projection : R RA Mπ →  dianalytic. 
By Theorem 6.2, to solve the Neumann problem on the Möbius strip we need to determine a symmetric 

Neumann function for RA  
THEOREM 7.1. A symmetric Neumann function for RA  is  

( ) ( ) ( ) ( )
( )

( )11 1
1

1; cos
2R

n nn n
k

A nn n
n

r r
N z C n

n R R R

− −∞

− −+ −
=

ρ + −ρ + −
ζ = + ⋅ θ −α −

+ −
∑  (11)
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( )i1 1 1ln ln e e ,
2 2

i i ie re rθ+πθ α α− ρ − − −
ρ

 

where 1,
⎧ ⎫

ζ = ζ −⎨ ⎬
ζ⎩ ⎭

, eir αζ = , 1 r R
R
< < , eiz θ= ρ , 1 R

R
< ρ <  and C is an arbitrary constant.  

Proof. A symmetric Neumann function ( ) ( );
R

k
AN z ζ  for RA  with singularities at ζ  and ( )k ζ is given by 

( )6 , where RD A= . Since  

( ) ( ) 2; ; 0
R R R

s

A A A

h z d z d d
n n lσ σ∂ ∂ ∂

∂ ∂υ π
ζ σ = ζ σ + σ =

∂ ∂∫ ∫ ∫ , 

the compatibility condition is satisfied.  
By Proposition 3.3, it follows that sh  is a symmetric function on RA . Since the function sh  is also 

harmonic on RA , for ei
Rz Aθ= ρ ∈ , we have 

( ) ( ) ( )0
1

; cos sinni n
s n n

n

h e n n
∞

−θ

=

⎡ ⎤ρ ζ = α + ρ + −ρ α θ + β θ⎣ ⎦∑ , (12)

where the coefficients 

( )
( ) 11 1

1 cos
2

nn

n nn n

r r
n

n R R R − −+ −

+ −
α = − ⋅ α

⎡ ⎤+ −⎣ ⎦

, 1n ≥  

and 

( )
( ) 11 1

1 sin
2

nn

n nn n

r r
n

n R R R − −+ −

+ −
β = − ⋅ α

⎡ ⎤+ −⎣ ⎦

, 1n ≥  

are determined from the Fourier expansion of ( ) ( );shz z
nσ

∂
Φ = ζ

∂
 on z R= . Then plugging ( )12  in ( )6  we 

achieve ( )11 , where 0C = −α .  
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