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Abstract. We study analytically the zero-Hopf bifurcation at the singular point of a new hyperchaotic 
system. Using the averaging theory, we find the sufficient conditions such that one pseudo-periodic 
solution emerges at the bifurcation points. We use the numeric simulations to describe the stability of 
these orbits. 
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1. INTRODUCTION 

The hyperchaotic Rössler system was first presented by Rössler in 1979, which possesses more than 
one positive Lyapunov exponent [1]. Due to the characteristics of high capacity, high security, and high 
efficiency, the hyperchaotic systems have been broadly applied in nonlinear circuits, secure communications, 
and so on (see, e.g., Refs. [2–8] and references therein). Recently, control and stability of Hopf bifurcation 
has been researched extensively [9–18]. However, due to the complexity of the higher-dimensional systems, 
there are few works on the n-dimensional zero-Hopf bifurcation with n > 3 [19, 20].  

Here we approach a new hyperchaotic system [21, 22], from a dynamical system point of view. In 
particular, we investigate a four-dimensional zero-Hopf equilibrium (that is, an isolated equilibrium with 
double zero eigenvalues and a pair of purely imaginary eigenvalues) of the new hyperchaotic system. Since 
the hyperchaotic system generates multiple positive Lyapunov exponents, its dynamics is hard to predict and 
control. As far as we know there are no rigorous analytic studies of the existence of periodic solutions for the 
dynamic system described by Eq. (1). In this paper, we study the periodic orbit that bifurcates in the zero-
Hopf bifurcation equilibrium of the differential system (1), using the averaging method [17–19], which is a 
mature method widely used. 

The rest of this paper is arranged as follows. In Section 2, we consider the existence and stability of 
pseudo-periodic solutions of the new hyperchaotic system. Then numerical simulations of the solutions 
obtained in Section 2 are given in Section 3. Finally, a brief conclusion is given. 

2. PSEUDO-PERIODIC SOLUTIONS  

Here we consider a new hyperchaotic system in the form 

),(

,
,)(

yxew
xydxczz

xzbyy
wyzyxax

+−=
++−=

+−=
+−−=

 (1) 

where x, y, z, and w represent dynamical variables, and a, b, c, d, and e are parameters. When a = 2.45, b = 9, 
c = 5, d = 0.06, and e = 1.4, the system (1) has the Lyapunov exponents [22]: λ1 = 0.6916, λ2 = 0.1911, λ3 = –0.0002, 
and λ4 = –17.5453. The two positive Lyapunov exponents indicate that system (1) is hyperchaotic. The 
projections of system (1) are displayed in Fig. 1. 



2 Pseudo-periodic solutions of a new hyperchaotic system via the averaging theory  139

  

  
Fig. 1 – Phase portraits of system (1) with the initial value (x0, y0, z0, w0) = (0.5, 0.5, 0.5, 0.5): 

a) the x-y-z space; b) the x-y-w space; c) the x-z-w space; d) the y-z-w space. 

Obviously, the origin of coordinates of R4 is always an equilibrium for the hyperchaotic system (1). 
The system (1) has other two equilibriums, if d 2+4bc ≥ 0. Without loss of generality, here we only consider 
the case that the equilibrium point is (0, 0, 0, 0). 

The Jacobian matrix at the origin point (0, 0, 0, 0) is  
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It is not hard to get that the eigenvalues of A are λ1 = –b, λ2 = –c, and λ3,4 = [a ± (a2–4e)1/2]/2. According the 
conditions for the origin to be a zero-Hopf equilibrium, the parameters must satisfy a = b = c = 0, and e > 0. 
Then the eigenvalues are 0, 0, and ± ie1/2.  

Remark 1. When a = b = c = 0, and e > 0, then there exists a two parameter family of the new 
hyperchaotic system (1) for which the origin of coordinates is a zero-Hopf equilibrium point. Moreover, the 
eigenvalues at the origin for this two parameter family are 0, 0, and ± ie1/2. 

Based on the averaging theory for periodic orbits [17–19], let (a, b, c) = (εa1, εb1, εc1), where a1, b1, and c1 are 
real nonzero numbers, and ε > 0 is a sufficiently small parameter. Then the new hyperchaotic system (1) becomes 
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We rescale the variables (x, y, z, w) = ε X, ε Y, ε Z, ε W), and denote the new variables (X, Y, Z, W) 
by (x, y, z, w). Then the system (2) can be rewritten as follows: 
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Using the averaging method, we study the behavior of system (3), which is rewritten in the following form: 
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Here s = (x, y, z, w) is a vector of four variables, 
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and F2(t, s, ε) = 0. First, we consider the initial value problem of the unperturbed system 
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So we can get the fundamental matrix Mz(t) of the linearization system (5):  
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where r=e1/2. The solution of the system (5) is s (t, z,ε )= (x(t), y(t), z(t), w(t)), presented as following 
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It is easy to find that the solutions x(t), y(t), and w(t) are periodic and admit the same period T = 2π/r. 
However, the terms in z(t) are periodic except for the term dy0t. In the following, we study both the existence 
and the stability of pseudo-periodic solutions. 

Step 1. The existence of pseudo-periodic solutions 
We find the inverse matrix of Mz(t) in the form 
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We compute the following integral: 
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Solving the nonlinear system given by F(z) = 0 and assuming a1 = b1 (just only for computing), we can get 
that the system above has four solutions as follows 
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The solution s1 corresponds to the original equilibrium. However the solutions s2 and s3 are nonsingular, 
det (∂F/∂z)(s2) = det(∂F/∂z)(s3) = 0. For the fourth solution s4, we note that 
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Remark 2. If db1c1(8d2+3d2π2–9e) ≠ 0, and a1=b1, there exists one T-pseudo-periodic solution s(t, �) of 
the system (3) such that s(t, ε ) shrinks to s4 as ε →0, where its T-pseudo period is T = 2π/r. 

Step 2. The stability of pseudo-periodic solutions 
The characteristic polynomial of matrix det(∂F/∂z)(s4) is 
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With the stability condition of the periodic solutions from the averaging theory, the coefficients of f(λ) 
should satisfy 

.0
)938(8

9,0
)938(16

)4748(9

,0
)938(16

)28896871(,0

2222

22
1

2
1

2222
11

2
11

2222

2222
11

1

>
−+

>
−+

−

<
−+
−+

>

rdd
dcb

rdd
cbdcb

rdd
rddcbc

ππ

π
π

 

Remark 3. The necessary (not sufficient) conditions for the stable pseudo-period orbit are: 
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Because the calculation is so complicated due to so many parameters, without loss of generality here 
we set c1 = 1 and b1 = 1/2. With the aid of the Maple software, we can obtain that the range of other 
parameters is (3π2+8)d 2/9 < r2 < (96π2+871)d 2/288. When d = 1, we give a few eigenvalues of 
det(∂F/∂z)(s4) according to the parameter r (that is e1/2): 
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Obviously, all the imaginary parts of the above-mentioned eigenvalues are negative. It indicates that we can 
find the following result marked as Remark 4. 

Remark 4. Let c1 = 1, b1 = 1/2, and (3π2+8)d 2/9 < r2 < (96π2+718) d 2/329, then the pseudo-periodic 
orbit is stable.  

Finally, the pseudo-periodic solutions s = (x(t, ε ), y(t,ε ), z(t, ε ), w(t, ε )) of system (3) generates the 
pseudo-periodic solutions εs = (ε x(t, ε ), ε y(t, ε ), ε z(t, ε ), ε w(t, ε )) of system (2). Since the pseudo-
periodic solutions tend to the equilibrium point (0, 0, 0, 0) as ε →0, it thus corresponds to a zero-Hopf 
bifurcation at the zero-Hopf equilibrium point. 

3. NUMERICAL SIMULATIONS OF THE PSEUDO-PERIODIC SOLUTIONS  

Without loss of generality, according our main results (see Remarks 1–4), we choose the parameters in 
system (2) as (a1, b1, c1, d, e, ε) = (1, 1, 2, 1, 2.22, 10-5). Figures 2a – 2d illustrate the numerical simulations 
of the pseudo-period solutions of system (2) in the x-y-z space, x-y-w space, x-z-w space, and y-z-w space, 
respectively. 

  

 
 

 

Fig. 2 – Phase portraits of system (2) with initial value (x0, y0, z0, w0) = (10-5, 10-5, 10-5, 10-5): a) the x-y-z space; b) the x-y-w 
space; c) the x-z-w space; d) the y-z-w space. The parameters are a1 = 1, b1=1, c1 = 2, d = 1, e = 2.22, and ε = 10-5. 

4. CONCLUSIONS 

In conclusion, we have investigated the zero-Hopf bifurcation in a new hyperchaotic system. Based on the 
averaging theory and symbolic computation, pseudo-periodic solutions are found and parameter conditions 
(necessary conditions and special sufficient conditions) are given for stable orbits of the new hyperchaotic 
system. Finally, numerical simulations are used to illustrate the corresponding stable orbits. 
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