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Abstract. We study shallow water waves that are described by the Boussinesq equation having 
logarithmic nonlinearity. The traveling wave hypothesis is applied to obtain Gausson solutions. The method 
of undetermined coefficients also solves the dynamical model. Finally, the conservation laws are computed 
using the method of multipliers. 
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1. INTRODUCTION 

The unique dynamics of shallow water waves is being studied for several decades [1–19]. In fact, there 
are several models in this context. These are Korteweg-de Vries (KdV) equation, Kawahara equation, 
Benjamin-Bona-Mahoney (BBM) equation, Peregrine equation, Gardner’s equation, regularized long wave 
(RLW) equation, Green-Naghdy equation and several others. This paper will address one such nonlinear 
evolution equation (NLEE) that also models shallow water waves. It is the Boussinesq equation (BE). 

While most of these models are studied with quadratic, cubic or power law nonlinearities, this paper 
will address BE with a logarithmic nonlinear form. The study of NLEEs with such new form of nonlinearity 
has gained popularity during the past few years, see e.g. [13, 14, 17–19]. One advantage of logarithmic-law 
models is that the solitary waves do not carry radiation or ripples. This primary advantage has particularly 
made the study of shallow water waves and optical solitons popular with logarithmic-law nonlinearity. 

The study of other models such as KdV equation, Kadomtsev-Petviashvili (KP) equation, RLW equation, 
BBM equation, all of which describe the dynamics of shallow water waves, have already gained sufficient 
attention during the past couple of years [4, 11, 13, 14, 17–19]. In the context of nonlinear optics, the widely 
used nonlinear Schrödinger’s equation with logarithmic-law nonlinearity has also been extensively studied 
[5]. It must be noted that these NLEEs with logarithmic form of nonlinearity produce a special kind of 
solitary wave that are known as Gaussons. It is however unknown, thus far, if these Gaussons retain the basic 
properties of solitons, such as the elastic property of soliton-soliton interaction, application of inverse 
scattering transform to secure soliton solutions, existence of infinitely many conservation laws and others. 

In this paper we will study the solitary waves of BE that carry logarithmic-law nonlinearity. The 
traveling wave hypothesis and the method of undetermined coefficients will be applied to retrieve exact 
Gausson solutions from this nonlinear model. Subsequently, the conserved densities are listed from the Lie 
symmetry analysis. Finally, the conserved quantities are also given that are obtained from the corresponding 
densities and Gausson exact solutions. 
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2. GOVERNING EQUATIONS 

We study the shallow water wave dynamics by the aid of BE with logarithmic nonlinearity. The 
corresponding BE reads as follows [14]: 

( )2
1 2ln 0tt xx xxxx xxttxxq k q a q q b q b q− + + + = . (1)

This dynamical model was introduced by Wazwaz [14]. In Eq. (1), q(x; t) represents the wave profile, 
where the independent variables x and t represent spatial and temporal coordinates, respectively. The first 
two terms in Eq. (1) represents the wave operator. The coefficient of a is the logarithmic nonlinear term. The 
coefficients of b1 and b2 are dispersion terms, where in particular, the coefficient of b2 gives the 
spatiotemporal dispersion. 

In the past, the BE was studied by several authors but mostly without the spatiotemporal dispersion 
effect. We will study Eq. (1) in the next couple of Sections by traveling wave hypothesis and the method of 
undetermined coefficients. This will lead to Gaussons with appropriate constraints, which will guarantee the 
existence of such solitary wave solutions. 

3. TRAVELING WAVE HYPOTHESIS 

This Section secures Gaussons or solitary wave solutions to Eq. (1) by the aid of traveling wave 
hypothesis. These traveling waves are referred to as waves of permanent form that travel undisturbed without 
any deformation for long distances. The starting hypothesis for such waves is 

( , ) ( ) ( ),q x t g x vt g s= − =  
where 

(2)

.s x vt= −  (3)

In Eq. (2), v represents the speed of the wave and the functional form of g will give the solitary wave 
solution. Substituting the hypothesis (2) into (1) and integrating twice yields 

( ) ( ) ,0"ln 2
21

22 =+++− gvbbgaggkv  (4)

where 22" dssdg = . The integration constant is taken to be zero, both times, since the search is for a 
localized solitary wave solution.  

Next, multiplying both sides of Eq. (4) by dsdgg =' and integrating leads to 

( )( ) ( )[ ]gakvaggvbb ln222'2 22222
21 −+−=+ . (5)

Upon separating variables, one arrives at 

( ) ∫
−+−

=
+ gakvag

dg

vbb

s

ln2222 222
21

. (6)

Performing the integration in Eq. (6), gives the Gausson solution: 

( )22
( , ) ( ) B x vtq x t g x vt Ae− −= − = , (7)

where the amplitude A and the inverse width B are 

( )2 22
exp

2

a v k
A

a

⎡ ⎤− −
⎢ ⎥=
⎢ ⎥⎣ ⎦

 (8)

and 
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1
2

,a
B

b b v
=

+
 (9)

respectively. The constraint conditions introduced from amplitude A and width B of the Gausons are 

0a ≠  (10)

and 

( )2
1 2 0,a b b v+ >  (11)

which must be valid at all times for these Gaussons to exist. 

4. THE METHOD OF UNDETERMINED COEFFICIENTS 

This is an inverse problem approach. In this method a Gausson of the form (7) is assumed for the 
solution to Eq. (1). Upon substituting (7) into (1) and simplifying leads to 

( )( ) ( ) ( ) ( ) ( )2 2 2 2 2 4 2 2 4
1 22 1 2 4 12 3 1 ln 2ln 5 2 0,v k b b v B a A Aτ τ τ τ τ⎡ ⎤− − + + − + − + − + + =⎣ ⎦  (12)

where 

.( )B x vtτ = −  (13)

From Eq. (12), upon setting to zero the coefficients of linearly independent functions m2τ , where m = 0, 1, 2, 
one recovers Eqs. (8) and (9), and the speed of Gaussons as 

2 3 ,
2

v ak= +  (14)

which gives another constraint for these Gaussons to exist. This constraint is 
22 3 0.k a+ >  (15)

Thus, three necessary constraint conditions for Gaussons to exist are given by Eqs. (10), (11), and (15). It is 
interesting to note that condition (15) is retrievable from the second integration scheme, namely the 
application of the method of undetermined coefficients. However, the first two constraints are obtained from 
the traveling wave solution. Thus, a complete set of integrability criteria are retrieved with the application of 
two independent integration schemes.  

5. CONSERVATION LAWS  

No study of NLEEs is complete without addressing the issue of conservation laws. These conserved 
quantities give a list of properties that stay invariant with shallow water waves flow, unless perturbation 
terms introduce its adiabatic change, which is not the case here. Many NLEEs have infinitely many conserved 
quantities. However, the BE with logarithmic-law nonlinearity has four conserved quantities. They will be 
retrieved with Lie symmetry analysis through the multipliers approach. The details are explained and listed here. 

The conserved 1-form 
t xT Dx T Dt+  (16)

of the differential equation satisfies 

( )[ ] x
x

t
txxttxxxxxxxxtt TDTDqbqbqqaqkqqtxQ +=+++− 21

2 ln...),,,(  
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for some differential function Q and it can be shown, therefore, that 

( )( )2
1 2( , , , ...) ln 0tt xx xxxx xxttxx

Q x t q q k q a q q b q b q⎡ ⎤− + + + =⎣ ⎦ε , 

where  is the Euler operator. The calculations reveal that xtxtQ ,,,1= . In each case tT is the conserved 
density. 

1. 1=Q  
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The corresponding conserved quantities are: 

( ) 021 =+−= ∫
∞
∞− dxbqqI xxtt  (17)
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and  
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These integrals are evaluated using the Gaussons from Eq. (7). It needs to be noted that for 4I  to be a 
conserved quantity, one needs to have 

4 0,dI
dt

=  (21)
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which gives v = 0. This shows that I4 will be a conserved quantity for stationary Gaussons only. These four 
conserved quantities are related to mass, linear momentum, energy and speed of the Gausson, not necessarily 
in this order. 

6. CONCLUSIONS  

This paper addressed the Boussinesq equation with logarithmic-law nonlinearity. The traveling wave 
hypothesis led to Gausson soliton solutions. The method of undetermined coefficients also reveals the same 
solution. There is a list of constraint conditions on the coefficients of Boussinesq equation that must be 
obeyed for Gaussons to exist. These conditions emerge from the structure of soliton parameters that fall out 
from the derivation of these solutions. There are four conservation laws that are retrieved from this shallow 
water wave model. The multiplier approach yields these laws. 

The results of this paper form a strong foundation for further research of this dynamical model. Later, 
additional integration schemes will be applied to address Boussinesq equation. Some of these are 
Kudryashov’s method, extended trial equation method, tanh method, Lie symmetry analysis and several 
others. Additionally, perturbation terms will be included such as shoaling, higher order dispersion as well as 
nonlinear dispersion. Such extended models for Boussinesq equation with logarithmic nonlinearity will be 
addressed in future and the results will be published elsewhere. 
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