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Abstract: In this work, by using a simple transformation technique, we have show that the nonlinear 
wave equations: Zakharov equations and generalized Zakharov equations can be reduced to the same 
family of Duffing or double-well Duffing equations. Then by means of quotient trigonometric 
function expansion method, many kinds of exact and explicit solutions of this family of equations are 
obtained in a unified way. These solutions include periodic and non-periodic exact solutions. 
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1. INTRODUCTION 

NPDE are widely used as models to describe complex physical phenomena in different domains of 
science as fluid dynamics, solid state physics, heat transfer, vibrations and so on. An exact solution for 
nonlinear systems is frequently scarce at least at the present state of knowledge. New and innovative 
approaches capable to solve nonlinear dynamical system should be known. But all methods used in study of 
the NPDE have their own advantages and deficiencies. 

The present paper is motivated by the desire to use the QTFEM for solving some coupled nonlinear 
systems of two equations in terms of two unknowns u (complex function) and v (real function). In order to 
decouple the system, we will consider that ( )eiu X Ψ= ϕ  and v = Y(�) and a suitable ansatz for function X. It 
should be emphasized that the basic step for solving the coupled equations lies in making a proper 
transformation, in order to obtain the implicit relation between these two unknown functions X and Y as 
functions of another unknownϕ . In this way, the system will be decoupled and the equation in X can be 
solved by QTFEM. 

Here, we consider two coupled NPDE. The first of these is ZE, which is used especially in discussions 
of the evolution of Langmuir turbulence when strong turbulence effects are considered. These equations take 
into account a simplified model involving fluid concepts. In one dimension, ZE may be written as [1]. 

  i tu u uv+ Δ = α  (1) 

 2v (| | ),ttv u− Δ = Δ  (2) 

where α is a known constant. Eq. (1) describes the evolution of the envelope of the high-frequency electric 
field with the nonlinearity included through a term involving a density fluctuation and the Eq. (2) describes 
the plasma density measured from its equilibrium value. The Zakharov theory is connected to a more general 
theory for nonlinear plasma processes. Also kinetic energy is used in [2] to rederive the ZE. The system can 
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be derived from a hydrodynamic description of the plasma. Plasma can be modeled by a superposition of 
several changed compressible gasses. Beyond of these cases we can look at particular regimes, long-wave 
regimes or as a high-frequency limit of Klein-Gordon waves systems [3]. The ZE may be modified in 
various ways to take into account of electromagnetic effects or the magnetization of the plasma. Colin and 
Colin [4] proposed a generalization of the Zakharov equations (GZE) in the form.  

 2i | |tu u u uv+ Δ −β = α  (3) 

 2(| | )ttv v u− Δ = Δ  (4) 

where β is a known constant. 
In last years, seeking exact solutions of NPDE has been an important role in the study of nonlinear 

wave phenomena arising in mathematical physics. The wave phenomena are observed in elastic media, 
plasma physic, optical fibers, fluid dynamics, biology, hydrodynamics, etc. If these exact solutions are 
known then can help one to understand within wheels of the intricated physical phenomena modeled by the 
nonlinear evolution equations.  

Recently scientists were concerned about finding exact solutions and some efficient procedures were 
developed for solving the ZE and GZE such as: a conservative difference scheme presented by Chang at al. 
[5] for the initial boundary value problem. Then Yomba [6] and Yan [7] used the general projective Riccati 
equations. Variational method is applied by Zhong [8] to find solitary wave solution of GZE. The first 
integral method is proposed by Achab [9] and by Sun et al. [10]. Extended F-expansion method for GZE is 

employed by Wang and Li [11]. The so-called generalized )'(
G
G

 expansion method is modified to obtain 

new travelling wave solutions for GZE by Zedan [12] and by Khan et al. [13]. Other methods can be 
mentioned as bifurcation method [13], Jacobi elliptic function expansion [14] and so on [15–17].  

2. THE QUOTIENT TRIGONOMETRIC FUNCTION EXPANSION METHOD 

In the present work we propose an approach to search explicit and exact solutions of NPDE in the form 
of a quotient of a trigonometric function. Also we apply the simplest nonlinear differential equation that has 
lesser order than the studied equations. We apply our approach to obtain exact solutions of Duffing and 
double-well Duffing equations. 

Let us consider the nonlinear Duffing equations as follows  

 3 0,X AX BX
••
+ − =   (5) 

where X is the unknown variable, A and B are positive constants and dot means differentiation in respect to t. 
In order to solve Eq. (5), the following transformation is needed: 

 ,tτ = ω  (6) 

where ω  is an unknown parameter called the frequency of the system. 
Substituting of Eq. (6) into Eq. (5) leads to  

 2 3'' 0,X AX BXω + − =  (7) 

where   
τd

d
=' . 

Based on the trigonometric function expansion method, Eq. (7) may have the following quotient 
trigonometric solution [18]: 
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where ai, bi, i = 0, 1, 2, … n are unknown constants at this moment, θ  satisfies the following relation  

 θθ sin=′  (9) 

and n is determined by partially balancing the highest degree nonlinear term and the derivative terms of 
higher order in Eq. (7). One obtains n = 1. 

From Eq. (9) we obtain  
 0sin sech( ),θ = ± τ + Ψ  (10) 
where τ  is given by Eq. (6) and 0Ψ  is constant. 

Differentiating Eq. (10) with respect to τ  and taking into account Eq. (9), one gets  
 0cos tanh( ).θ = ± τ + Ψ  (11) 

The quotient solution (8) takes the following form: 

 0 1 2

0 1 2

sin cos( ) .
sin cos

a a aX
b b b
+ θ+ θ

θ =
+ θ+ θ

   (12) 

In order to get nontrivial solutions of Eq. (7), we will determine the coefficients ai and bi (i = 0, 1, 2). 
From Eq. (12), we obtain the following expression:  

 2
0 1 2

(sin ,cos )''( ) .
( sin cos )

MX
b b b

θ θ
θ =

+ θ+ θ
   (13) 
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and  
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3

0 1 2

(sin ,cos )( ) ,
( sin cos )

NX
b b b

θ θ
θ =

+ θ+ θ
 (15) 

with  

+−+−++++= θθθθθ 32
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 3 2 2 3 2
2 0 2 1 2 2( 3 )cos (3 )sin cos .a a a a a a+ + θ+ − θ θ      (16) 

Now, substituting Eqs. (12), (13) and (15) into Eq.(7) we obtain a set of an algebraic equations about 
expansion coefficients ai and bi. Setting the coefficients of various θjsin  (j = 0, 1, 2, 3) and θθ cossin j  
(j = 0, 1, 2) as zero, one can obtain the following equations: 
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3 3
1 2 2(3 ) 0.B a a a− − =  

By means Maple 15 or Mathematica 8, we can get the following cases: 
 

Case 1:   0 2 0 2 0, 2a a b b A= = = = ω =  

Case 2:   0 2 0 2 0 1 1, , 0Ba a b b a a b
A

= − = − = ± = =  

Case 3:   2
0 2 1 2 1

20, , i , i 1Aa a b b a A
B

= = = = = ± ω = = −  

Case 4:   0 2 1 1 0 2 0, 0, , 2Ba a a b b b a A
A

= = = = = ± ω =  

Case 5:   2 2
2 0 1 1 0 2 0 1 00, ( ) , , 2 ,| | | |B Ba b b a a b a A a a

A A
= = = ± − = ± ω = >  

Case 6:  1 2 0 1 2 00, ,
2

B Aa a b b b a
A

= = = = = ± ω =  

Case 7: 0 0 1 1 2 20, , , 2B Ba b b a b a A
A A

= = = ± = ± ω =  (18) 

Case 8:  2 2 0 0 1 10, ,B Ba b b a b a
A A

= = = ± = ±  

Case 9:  2 2
0 2 1 1 2 0 20, ( ), , 2B Ba b b a a b a A

A A
= = = ± + = ± ω =  

Case 10:  0 1 1 2 0 20, ,
2

B Aa a b b b a
A

= = = = = ± ω =  

Case 11:  1 1 0 0 2 20, ,B Ba b b a b a
A A

= = = ± = ±  

Case 12:  2 0 1 1 2 0, 0, , ia a a b b b A= − = = = − ω =  

Case 13:  1 1 2 0 0 20, , ,
2

B B Aa b b a b a
A A

= = = ± = ± ω =  

Case 14: 2 2
1 0 2 1 2 0 2 0 2 00, , ( ) , , 2 , | | | | .B B Ba b a b a a b a A a a

A A A
= = ± = ± − = ± ω = >   

In the cases 1, 2, 4, 7, 8, 11 and 12 the solutions (12) are constants. In the following we present the 
solutions:  

In case 3: 

 1,2
0 0

1 2 1 .
cos( )

AX
b B At

= ±
+ Ψ

 (19) 

In case 5: 

 0 0 1
3,4 1 02 2

1 0 0 0

cosh( ) ,| | | |
sinh( 2 )

A a At aX a a
B a a a At

+ Ψ ±
= ± ≥

− − + Ψ
 (20) 
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where 00 ,aΨ and a1 are real parameters. 
In case 6: 

 7,8 0coth( ).
2

A AX t
B

= ± + Ψ  (21) 

In case 9: 

 1 2 0
9,12 2 2

2 0 1 2

sinh( 2 ) .
cosh( 2 )

a a AtAX
B a At a a

± − + Ψ
= ±

+ Ψ ± +
 (22) 

In case 10:  

 13,14 0tanh( ).
2

A AX t
B

= ± + Ψ  (23) 

In case 13 we obtain the same solutions given by Eq. (21). 

In the last case:  

 ||||,
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022
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20002

0200
18,15 aa
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B
AX ≥

−±Ψ++Ψ+

Ψ+−Ψ+
±=   (24) 

where 210 ,, aaa  are real parameters. 
Now, we study the nonlinear double-well Duffing equation. 

 3X 0.AX BX
••
− + =  (25) 

where A and B are positive constants. Under the transformation(6), Eq. (25) becomes  

 0'' 32 =+− BXAXXω  (26) 

where ω is the frequency of the system and 
τd

d
=' . 

For Eq.(26) we have the same quotient trigonometric solution(12). Substituting Eqs. (12), (13) and 
(15) into Eq. (26) we obtain a set of algebraic equations:  
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where the parameters A and B are known. 
Solving the nonlinear algebraic equations (27), we obtain :   1,2 0 22 2

0 2 0 0 2 0

2 1 , | | | | .
( ) cosh( ) sinh( )

AX b b
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3. EXACT SOLUTIONS OF NPDE 
BY MEANS OF A SUITABLE TRANSFORMATION AND OF THE QTPEM 

Because into Eqs. (1–2) and (3–4) the function u(x, t) is a complex function and v(x, t) is a real 
function, we assume that these equations has travelling wave solutions in the forms: 

 i
1 2( , ) ( )e , ( , ) ( ), , ,u x t X v x t Y aX t bxΨ= ϕ = ϕ ϕ = −Ω Ψ = −Ω    (29) 

where both X(ϕ ) and Y(ϕ ) are real functions, and a, b, Ω1 and Ω2 are constants to be determined later. 
Substituting Eqs.(30) into Eqs.(1) and (2), we have the following ODE for X(ϕ )and Y(ϕ ):  

 2 2
2 1'' i(2 ) ' 0a X XY b X X ab X−α − +Ω + −Ω =  (30) 

 0)('')( 222
1 =−−Ω xxXYa  (31) 

where prime meaning differentiation with respect toϕ . 
From Eq.(31) we obtain 1Ω =2ab and integrating Eq.(32) twice with respect to ϕ  and taking into 

account that  ')'()( 22
2 XaX xx =  we get  

 2 2 2
1 1( ) ,a Y aX C CΩ − − = ϕ +    (32) 

where C1 and C are integration constants. Because it is clear that =
∞→

)(lim ϕ
ϕ

X constant and 

=
∞→

)(lim ϕ
ϕ

Y constant, it holds that C1 = 0 and from Eq.(33) yields 

 
2 2

2 2
( )( ) .

(4 1)
C a XY
a b
+ ϕ

ϕ =
−

  (33) 

Substituting Eq.(33) into Eq.(30), it can be shown that  

  
2

32
2 2 4 2 2 2'' 0

(4 1) (4 1)
b aCX X X

a a a b a b
⎡ ⎤Ω α

+ − − − =⎢ ⎥− −⎣ ⎦
   (34) 

In the same way, for Eqs. (3) and (4), one can get 

 
2

32
2 2 4 2 2 2 2'' 0

(4 1) (4 1)
b aCX X X

a a a b a b a
⎡ ⎤ ⎡ ⎤Ω α β

+ − − − + =⎢ ⎥ ⎢ ⎥− −⎣ ⎦⎣ ⎦
   (35) 

and the function Y(ϕ ) given by Eq.(33). 
We remark that Eqs. (34) and (35) are of the Duffing(or double-well Duffing) type equations, namely 

Eq.(7) and (26). 
At this point, we can establish the following exact travelling solutions of ZE and GZE, taking into 

consideration Eqs. (29), (34), (35), (19–24) and (28). 

3.1. EXACT SOLUTIONS FOR THE GZE 

3.1.a. If into Eq.(34) we consider that Ω1 = 2ab and  

    0:
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,0:
)14( 22242
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2
2 >=

−
>=
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Ω B
ba

A
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aC

a
b

a
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 (36)  

then exact solutions of ZE obtained through QTPEM are: 
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 2i( )
1,2

0 0

1 2 1( , ) e
cos( )

bx tAu x t
b B A

−Ω= ±
ϕ + Ψ

 (37) 

    2i( ) 0 0 1
3,6( , ) 2 2

1 0 0 0

cosh( 2 )e
sinh( )

bx t
x t

A a A au
B a a a A

−Ω ϕ + Ψ ±
= ±

− − ϕ +Ψ
 (38) 

 2i( )
7,8 0( , ) e coth( )

2
bx tA Au x t

B
−Ω= ± ϕ + Ψ  (39) 

   2i( ) 1 2 0
9,12 2 2

2 0 1 2

sinh( 2 )( , ) e
cosh( 2 )

bx tA a a Au x t
B a A a a

−Ω ± ϕ + Ψ
== ±

ϕ +Ψ ± +
 (40) 

 2i( )
13,14 0( , ) e tanh( )

2
bx tA Au x t

B
−Ω== ± ϕ + Ψ  (41) 

  2i( ) 0 0 2 0
15,18

2 0 0 0

cosh( 2 ) sinh( 2 )( , ) e
cosh( 2 ) sinh( 2 )

bx tA a A a Au x t
B a A a A

−Ω ϕ + Ψ − ϕ +Ψ
== ±

ϕ + Ψ + ϕ +Ψ
   (42) 

3.1.b. If  

    
0:

)14(
,0:

)14( 22242

2

2
2 <−=

−
<−=

−
−−

Ω B
ba

A
ba
aC

a
b

a
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 (43) 

then the exact solutions of ZE are 

 2i( )
1,2 0 2

0 0 2 0

2 1( , ) e , | | | |
cos( ) sinh( 2 )

bx tAu x t b b
B b A b A

−Ω== ± >
ϕ + Ψ − ϕ +Ψ

  (44) 

where  210210 ,,,,,,,, aaabaCbbb are constants and )2( btxa −=ϕ . 

3.2. EXACT SOLUTIONS FOR THE GZE 

Comparing Eq. (34) corresponding to ZE and Eq.(35) corresponding to GZE, we obtain the same 
solutions given by Eqs. (37–42) for the same A given by Eq. (37) but B given by the expression   

      
0:

)14( 222 >=+
−

B
aba
βα

                          (45)  

For A given by Eq. (43) and B given by 

  0:
)14( 222 <−=+

−
B

aba
βα

   (46)  

we obtain the solution given by Eq.(44) for GZE where )2( btxa −=ϕ . It should be emphasized that the 
second variable becomes 

  
2

2 2 2( , ) .
(4 1) 4 1

ij
ij

XCv x t
a b b

= −
− −

 (47) 
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4. CONCLUSIONS 

In the present work, by using the quotient trigonometric function expansion method we have been able 
to obtain in an unified way by means of symbolic computation system Mathematica 8 or Maple 15, many 
kinds of exact solution of Zakharov equations and generalized Zakharov equations by means of a simple 
transformation technique. We showed that nonlinear wave equations can be reduced to the same family of 
Duffing or double-well Duffing equations. It is remarkable that through this transformation, the quantity of 
computations involved in solving nonlinear partial differential equations is greatly reduced. Our procedure is 
one of the most effective method to obtain the exact solutions of nonlinear partial differential equations. The 
results show that our procedure is a powerful mathematical tool for finding periodic and non-periodic exact 
solutions of some complicated nonlinear partial differential equations. Moreover, the obtained results in this 
way clearly demonstrated the reliability of the proposed procedure. 
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