
 THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A,
 OF THE ROMANIAN ACADEMY Volume 18, Number 2/2017, pp. 182–187

MINIMAL INGREDIENTS FOR TURING COMPLETENESS
IN MEMBRANE COMPUTING

Bogdan AMAN, Gabriel CIOBANU

Romanian Academy, Institute of Computer Science
Corresponding author: Gabriel CIOBANU, E-mail: gabriel@info.uaic.ro

Dedicated to the 150th anniversary of the Romanian Academy

Abstract. In this paper we provide several computability results looking for minimal ingredients
needed to obtain Turing completeness of various bio-inspired computation models (membrane systems).
We emphasize the relevance of number two in reaching Turing completeness for several membrane
systems.

Key words: membrane systems, Turing completeness.

1. INTRODUCTION

Membrane computing is a known branch of natural computing aiming to abstract computing ideas and
formal models from the structure and functioning of living cells. The membrane systems (also known as P
systems), are parallel and distributed computing models offering an approach to computational phenomena that is
potentially superior to the one provided by conventional systems due to their inherent parallelism and non-
determinism [26]. Computation is given by rewriting rules operating over multisets of objects (representing
sets of objects with associated quantities) in cell-like compartmental architectures with polarizations (membrane
electric charges). Objects represent the formal counterpart of the molecular species (ions, proteins) floating inside
cellular compartments, while the evolution rules represent the formal counterpart of chemical reactions.

Three main research directions are usually considered in membrane computing: modelling of biological
phenomena, computational power in terms of the classical notion of Turing computability using a minimal quantity
of ingredients, and efficiency in algorithmically solving NP-complete problems in polynomial time (by using
an exponential quantity of ingredients) [26].

Considering P systems with moving membranes [12], it is possible to model a part of the immune
system [11], to get Turing completeness by using a small number of membranes [16], and to solve efficiently
hard problems [14]. Moreover, these P systems are related to the process calculus of mobile ambients [9, 10].

Gh. Păun presented the following question (problem F in [25]): “Can the polarizations be completely
avoided? The feeling is that this is not possible, and such a result would be rather sound: passing from no
polarization to two polarizations amounts to passing from non-efficiency to efficiency.”

Inspired by this question, we analyze minimal ingredients needed to get the Turing completeness. In
particular, we show that two ingredients of some type are enough to obtain Turing completeness. There are
several similarities: two is the minimal number of regions in a distributed system, two is the number of registers in
a Turing complete register machine, and two is the number of states in the smallest unit of memory that is the
bit. Focusing on membrane systems, the minimal number of ingredients needed in order to obtain Turing
completeness for membrane systems is: two polarizations are enough in active membranes (Section 3), two
catalysts in catalytic P systems (Section 4), either promoters or inhibitors of weight two, as well as two
membranes with one catalyst and one promoter/inhibitor (Section 5), two membranes in splicing P systems
(Section 6) and two membranes in P systems with symport/antiport rules (Section 7).

2 Minimal ingredients for turing completeness in membrane computing 183

1. PREREQUISITES

The set of non-negative integers is denoted by ℕ. Given a finite alphabet V = {a1, … , an}, the free
monoid generated by V under the operation of concatenation is denoted by V∗. The elements of V∗ are called
strings, and the empty string is denoted by λ. The number of occurrences of a symbol ai in a string x is
denoted by

iax || , while the length of a string x is denoted by ∑=
i ia axx |||| . The Parikh vector associated

with a string x with respect to V is (
1

|| ax ,…. ,
nax ||). The Parikh image of an arbitrary language L over V is

the set of all Parikh vectors of strings in L, and is denoted by Ps(L). For a family of languages FL, the family
of Parikh images of languages in FL is denoted by PsFL. A multiset over V is a mapping f : V → ℕ; it can be
represented by)()(

1 ,...,1 naf
n

af aa . The families of regular and recursively enumerable languages are

denoted by REG and RE respectively, and the family of Turing computable sets of non-negative integers by
NRE. For more details of formal language theory the reader is referred to the handbook in this area [27].

2. P SYSTEMS WITH ACTIVE MEMBRANES

We consider membrane systems with active membranes [23] without division and dissolution rules
(these rules are not needed here).

Definition 1. A P system with active membranes of degree d is a tuple

Π = (O, H, E, μ, w1, …, wd, e1, …, ed, R), where:
• O is a finite non-empty alphabet of objects;
• H is a finite set of labels for membranes;
• E is the set of electrical charges for membranes;
• μ is a membrane structure with membranes labelled by elements of H;
• w1, …, wd ∊ *O describe the initial multisets of objects placed in μ;
• e1, …, ed are the initial electrical charges of the d membranes of μ;
• R is a finite set of rules:

(a) [a → w i
h] , a ∊ O, v ∊ *O , h ∊ H, i ∊ E object evolution rules

 An object a placed in a membrane labelled by h with polarization i is rewritten into the multiset w.
(b) a[i

h] → [b j
h] , a, b ∊ O, h ∊ H, i, j ∊ E communication rules

 An object a is sent into a membrane labelled by h, becoming b, possibly changing the polarization.
(c) [a i

h] → b[j
h] , a, b O, h ∊ H, i, j ∊ E communication rules

 An object a, placed into a membrane labelled by h, is sent out of membrane h and becomes b,
possibly changing the polarization.

 (cλ) [a i
h] → b[j

h] , a ∊ O, b ∊ *O ∪{λ}, h ∊ H, i, j ∊ E communication rules
 Same as rule (c), except that b can also be deleted.

The rules of such a P system can be applied in a maximal parallel manner in one step (all rules should be
used in parallel to the maximum degree possible), with the following constraint: at most one of the rules of
types (b), (c) and (cλ) can to be used for each membrane in a given step. If no rule can be applied, the
computation halts. Outputs are associated only with halting computations in the form of the objects sent into
the environment during the computation. By NOPm(activen, D) and PsOPm(activen,D) we denote the family
of all numbers, and respectively vectors of numbers computed by P systems with at most m membranes
allowing n polarizations, using rules of the types contained in D, where ∅ ⊂ D ⊆ {a, b, c, cλ }.

It is enough to have two polarizations to achieve Turing completeness.

THEOREM 1 [5]. NOP1(active2, {a, cλ }) = NOP2(active2, {a, c}) = NRE, and
 PsOP1(active2, {a, cλ }) = PsOP2(active2, {a, c}) = PsRE.

 Bogdan AMAN, Gabriel CIOBANU 3 184

Turing completeness can be obtained without using membrane polarizations, but using division rules and a
membrane structure where for each symbol appearing in the simulated matrix grammar there appear two
membranes [1]. By considering also membrane creation rules, P systems with active membranes using two
membrane labels and at most two objects are Turing complete [6].

3. CATALYTIC P SYSTEMS

Definition 2. A catalytic P system is a construct
Π = (O, C, μ, w1, …, wd, R1, …, Rd, io), where:

• d, O, μ, w1, …, wd are as in Definition 1;

• C ⊆ O is the alphabet of catalysts;
• Ri , 1 ≤ i ≤ d, are finite sets of evolution rules over O associated with the regions of μ; the rules

have the forms ca → cv or a → v, where c is a catalyst, a is an object from O\C, and v is a string
over ((O\C) × {here, out, in});

• io ∊ {0, 1, … , d} indicates the output region of Π.

The objects are transported through membranes according to the targets in, out and here. The evolution
is similar with the one of the systems described in the previous section. A membrane system Π is called
purely catalytic if every evolution rule involves a catalyst. The families of all sets of numbers or sets of
vectors computed by [purely] catalytic P systems with at most m membranes and the set of catalysts
containing at most k elements are denoted by NOPm([p]catk) and PsOPm([p]catk), respectively. We use the
bracket notation [p] to specify the parameter p to be present. The next result claims that both catalytic P
systems with no catalyst and purely catalytic P systems with one catalyst can only generate regular sets.

THEOREM 2. [26] PsOP1(cat0) = PsOP2(pcat1) = PsREG.

According to [4], for the (purely) catalytic P systems it is still open one of the challenging questions in
the area of P systems, namely whether we need two or three catalysts to get Turing completeness. Now we
have the following result.

THEOREM 3. [17] NOP2(cat2) = NOP2(pcat3) = NRE, and PsOP2(cat2) = PsOP2(pcat3) = PsRE.

Bistable catalysts (2cat) represent a special extension of the concept of catalysts able to change
between two states when being used in a rule, i.e. the catalytic rules are of the form ca → c’v and c’a → cv.

THEOREM 4. [2] NOP1(2cat1) = NRE.

Mobile catalysts (mcat) are allowed to have targets, i.e. the catalytic rules have the form ca → (c, tar)v

with c ∊ C and tar ∊ {here, out, in}.

THEOREM 5. [19] NOP2(mcat2) = NRE.

The concept of matter/antimatter was used in P systems: for each object a, the antimatter object a- exists. We
consider catalytic P systems extended by allowing annihilation rules aa- → λ. Other rules can be applied only
if no annihilation rule could bind the corresponding objects. We can prove that these two types of objects
(matter and antimatter) are powerful enough such that catalysts are not needed [3].

THEOREM 6. NOP1 (antim/pri) = NRE and PsOP1 (antim/pri) = PsRE.

Using rules of the form u → v and no catalyst, the cooperative rules of degree two of the form ab → v
are enough to obtain Turing completeness [24], while non-cooperative rules of the form a → v are not [22].

4 Minimal ingredients for turing completeness in membrane computing 185

5. P SYSTEMS WITH PROMOTERS AND INHIBITORS

Membrane systems with promoters/inhibitors [15] represent an extension of the usual membrane
systems. A rule with promoters of weight k has the form u → v|p, where u, v, p ∊ *O and |p| ≤ k; such a rule
can be applied only in the presence of the multiset of promoters p. The weight k can be interpreted here as
the quantity of the promoters. A rule with inhibitors of weight k has the form u → v |¬i, where u, v, i ∊ *O
and |i| ≤ k; such a rule can be applied only in the absence of the multiset of inhibitors i.

The difference between catalysts and promoters consists in the fact that catalysts directly participate in
rules (but are not modified by them) and the number of applications of a catalytic rule cannot exceed the
number of existing catalysts, while in the case of promoters it is possible to apply a rule as many times as
possible in the presence of the corresponding promoter. Thus, the catalysts inhibit the high parallelism of the
system while the promoters facilitate it (and guide the computation process).

We denote by PsOPm(α,β), where α ∊ {ncoo, coo} ∪ {catk | k ≥ 0} and β ∊ {proRw, inhRw}, the family
of sets of vectors of natural numbers generated by P systems with at most m membranes in which the
evolution rules can be either non-cooperative (ncoo), cooperative (coo) or catalytic by using at most k
catalysts (catk), as well as either promoters (proRw) or inhibitors (inhRw) of weight at most w.

P systems with inhibitors generate exactly the same family of Parikh sets as ET0L systems. P systems
with promoters generate more than the family of Parikh sets of ET0L languages.

THEOREM 7 [28]. PsOP1(ncoo, proR1) ⊇ PsOP1(ncoo, inhR1) = PsET0L.

Using either promoters or inhibitors of weight two, the P systems are Turing complete.

THEOREM 8 [8]. PsOP1(ncoo, proR2) = PsOP1(ncoo, inhR2) = PsRE.

The following Turing completeness results concern membrane systems with two membranes, one
catalyst and either one promoter or inhibitor.

THEOREM 9 [18]. PsOP2(cat1, proR1) = PsOP2(cat1, inhR1) = PsRE.

6. SPLICING P SYSTEMS

Splicing rules are frequently written as u1#u2$u3#u4, where u1, u2, u3, u4 ∊ O and {$,#} ∉ O. The
strings u1u2 and u3u4 are called splicing sites.

Definition 3. A splicing P system of degree d ≥ 1 is a construct Π = (O, T, μ, w1, …, wd, R1, …, Rd),
where:

• O, μ, and wi are as in Definition 1;
• T ⊆ O is the terminal alphabet;
• Ri, for i∊ {1,…, d}, are sets of evolution rules of the form (r; tar1, tar2) associated with the

compartments 1,…, d of μ, where r is a splicing rule over O and tar1, tar2 ∊ {here, in, out} are
target indicators.

A configuration of such a system is a tuple (M1,…, Md) over O. Formally, for i ∊ {1,…, d}, if
x = x1u1u2x2, y = y1u3u4y2 ∊ Mi and (r = u1#u2$u3#u4; tar1, tar2) ∊ Ri, x1, x2, y1, y2, u1, u2, u3, u4 ∊ O, the
splicing (x, y) ⊢r (z,w), z,w ∊ *O can take place in i. The strings z and w pass to the compartments indicated
by tar1 and tar2. A splicing P system is called non-extended if O = T. We use ELSPm(spl, in) for the family
of languages generated by splicing P systems having a degree at most m, and LSPm(spl, in) for the non-
extended case. The following theorem claims that splicing P systems with two compartments may generate
any recursively enumerable language.

THEOREM 10 [26]. ELSP2(spl, in) = LSP2(spl, in) = RE.

 Bogdan AMAN, Gabriel CIOBANU 5 186

7. SPLICING P SYSTEMS

Definition 4. A P system with antiport and symport rules of degree d ≥ 1 is a construct
Π = (O, T, E, μ, w1, …, wd, R1, …, Rd, io), where:

• O, μ, w1, …, wd and io are as in Definition 2, while T is as in Definition 3;
• E ⊆ O is a set of objects found in an unbounded number in the environment;
• Ri , for i∊ {1,…, d}, are sets of evolution rules (u, out; v, in), with u ≠ λ and v ≠ λ (antiport rule),

and (x, out) or (x, in), with x ≠ λ (symport rule).

The antiport rule (u, out; v, in) in Ri exchanges the multiset u inside membrane i with the multiset v
outside membrane i; the symport rule (x, out) sends the multiset x out of membrane i, and (x, in) takes x in
from outside membrane i (if i is the skin membrane, then x must contain at least one symbol not in E).

When using a minimally parallel mode min, in each transition step we choose at least one rule from
every set Ri of rules. anti s

k (symk) indicates that only antiport (symport) rules of weight at most k and size at
most s are used, where the weight of an antiport rule (u, out; v, in) is max{|u|, |v|} and the size is |u|+|v|. The
families of sets N(Π) and Ps(Π) computed by such symport/antiport P systems with at most d membranes
with rules of type α working in min mode are denoted by NOPd(α,min) and PsOPd(α,min), respectively.

The first result concerning P systems with symport/antiport rules working in maximal parallel way
claims that systems of two membranes using symport and antiport rules of weight two are enough for Turing
completeness. In [21] the authors claim that they do not know whether this result is optimal, but it seems that
simpler systems are not so powerful.

THEOREM 11 [21]. NOP2(anti2, sym2) = NRE.

P systems with minimal symport/antiport rules with only two membranes are Turing complete [7].
Turing completeness can also be obtained using two membranes when working in the minimally parallel
mode [26].

THEOREM 12. NOP2(anti 3
2 ,min) = NOP2(sym3,min) = NRE,

 and PsOP2(anti 3
2 ,min) = PsOP2(sym3,min) = PsRE.

Another situation is given by P systems with string objects [22], where strings are used instead of
objects and the evolution rules are based on string processing operations (in particular, on rewriting). Under
some restrictions over rules, two membranes are enough to generate all RE languages.

The P systems were extended to tissue P systems with communication rules, where one rule (if
applicable) is used on every channel. Turing completeness can be obtained either with one cell and two
channels between the single cell and the environment, or with two cells and one channel between them [20].

8. CONCLUSION

In this paper we present a survey of computability results in membrane computing. It is worth noting
the relevance of number two in reaching Turing completeness for these bio-inspired models; the number of
two ingredients often represents a delimiting boundary. In many cases, passing from one ingredient to two
ingredients represents the border between Turing non-completeness to Turing completeness. We are not
aware of any other approach that comprehensively investigates when and why this delimiting boundary is
found. Here we argued that two ingredients are enough to obtain Turing completeness for various P systems:
(i) in active membranes with polarizations, two polarizations are enough for Turing completeness (neither
dissolution nor division rules are used); (ii) in catalytic P systems either two catalysts or a bi stable catalyst (a
catalyst with two states) or two mobile catalysts placed in two membranes are enough; (iii) in splicing P
systems, P systems with symport/antiport rules and P systems with string objects two membranes are enough.

In [13] we prove that two membranes moving according to the endocytosis and exocytosis rules inside
a skin membrane represent the minimum number of mobile membranes needed to obtain Turing completeness.

6 Minimal ingredients for turing completeness in membrane computing 187

REFERENCES

1. A. ALHAZOV, P Systems Without Multiplicities Of Symbol-Objects, Information Processing Letters, 100, 3, pp. 124–129, 2006.
2. A. ALHAZOV, Number of Protons/Bi-stable Catalysts and Membranes in P Systems. Time-Freeness, Lecture Notes in Computer

Science, 3850, pp. 79–95, 2006.
3. A. ALHAZOV, B. AMAN, R. FREUND, P Systems with Anti-Matter, Lecture Notes in Computer Science, 8961, pp. 66–85, 2014.
4. A. ALHAZOV, R. FREUND, P Systems with Toxic Objects, Lecture Notes in Computer Science, 8961, pp. 99–125, 2014.
5. A. ALHAZOV, R. FREUND, GH. PĂUN, Computational Completeness of P Systems with Active Membranes and Two

Polarizations, Lecture Notes in Computer Science, 3354, pp. 82–92, 2005.
6. A. ALHAZOV, R. FREUND, A. RISCOS-NÚÑEZ, Membrane Division, Restricted Membrane Creation and Object Complexity

in P Systems, International Journal of Computer Mathematics 83, 7, pp. 529–547, 2006.
7. A. ALHAZOV, Y. ROGOZHIN, Towards a Characterization of P Systems With Minimal Symport/Antiport and Two Membranes,

Lecture Notes in Computer Science, 4361, pp. 135–153, 2002.
8. A. ALHAZOV, D. SBURLAN, Ultimately Confluent Rewriting Systems. Parallel Multiset-Rewriting with Permitting or

Forbidding Contexts, Lecture Notes in Computer Science, 3365, pp. 178–189, 2005.
9. B. AMAN, G. CIOBANU, Translating Mobile Ambients into P Systems, Electronic Notes in Theoretical Computer Science, 171,

2, pp. 11–23, 2007.
10. B. AMAN, G. CIOBANU, On the Relationship Between Membranes and Ambients, BioSystems, 91, 3, pp. 515–530, 2008.
11. B. AMAN, G. CIOBANU, Describing the Immune System Using Enhanced Mobile Membranes, Electronic Notes in Theoretical

Computer Science, 194, 3, pp. 5–18, 2008.
12. B. AMAN, G. CIOBANU, Simple, Enhanced and Mutual Mobile Membranes, Transactions on Computational Systems Biology,

XI, pp. 26–44, 2009.
13. B. AMAN, G. CIOBANU, Turing Completeness Using Three Mobile Membranes, Lecture Notes in Computer Science, 5715,

pp. 42–55, 2009.
14. B. AMAN, G. CIOBANU, Solving a Weak NP-complete Problem in Polynomial Time by Using Mutual Mobile Membrane

Systems, Acta Informatica, 48, 7–8, pp. 409–415, 2011.
15. P. BOTTONI, C. MARTĺN-VIDE, GH. PĂUN, G. ROZENBERG. Membrane Systems with Promoters/Inhibitors, Acta

Informatica, 38, 10, pp. 695–720, 2002.
16. G. CIOBANU, S.N. KRISHNA, Enhanced Mobile Membranes: Computability Results, Theory of Computing Systems, 48, 3,

pp. 715–729, 2011.
17. R. FREUND, L. KARI, M. OSWALD, P. SOSĺK, Computationally Universal P Systems without priorities: Two catalysts are

sufficient, Theoretical Computer Science, 330, 2, pp. 251–266, 2005.
18. M. IONESCU, D. SBURLAN, On P Systems with Promoters/Inhibitors, The Journal of Universal Computer Science, 10, 5,

pp. 581–599, 2004.
19. S.N. KRISHNA, A. PĂUN, Results on Catalytic And Evolution-Communication P Systems, New Generation Computing, 22,

pp. 377–394, 2004.
20. C. MARTĺN-VIDE, J. PAZOS, GH. PĂUN, A. RODRĺGUEZ-PATÓN, Tissue P Systems, Theoretical Computer Science, 296,

pp. 295–326, 2003.
21. A. PĂUN, GH. PĂUN, The Power of Communication: P Systems with Symport/Antiport, New Generation Computing, 20,

pp. 295–305, 2002.
22. GH. PĂUN, Computing with Membranes, Journal of Computer and System Sciences, 61, 1, 108–143, 2000.
23. GH. PĂUN, P Systems with Active Membranes: Attacking NP-complete Problems, Journal of Automata, Languages and

Combinatorics, 6, pp. 75–90, 2001.
24. GH. PĂUN, Membrane Computing. An Introduction, Springer, 2002.
25. GH. PĂUN, Further Twenty Six Open Problems in Membrane Computing, Third Brainstorming Week on Membrane Computing,

Fénix Editora, Sevilla, pp. 249–262, 2005.
26. GH. PĂUN, G. ROZENBERG, A. SALOMAA (Eds.), The Oxford Handbook of Membrane Computing, Oxford University Press, 2010.
27. G. ROZENBERG, A. SALOMAA (Eds.): Handbook of Formal Languages, Springer, 1997.
28. D. SBURLAN, Further Results on P Systems with Promoters/Inhibitors, International Journal of Foundations of Computer

Science, 17, 1, pp. 205–221, 2006.

Received June 22, 2015

