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Abstract. In this paper we provide several computability results looking for minimal ingredients 
needed to obtain Turing completeness of various bio-inspired computation models (membrane systems). 
We emphasize the relevance of number two in reaching Turing completeness for several membrane 
systems. 
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1. INTRODUCTION 

Membrane computing is a known branch of natural computing aiming to abstract computing ideas and 
formal models from the structure and functioning of living cells. The membrane systems (also known as P 
systems), are parallel and distributed computing models offering an approach to computational phenomena that is 
potentially superior to the one provided by conventional systems due to their inherent parallelism and non-
determinism [26]. Computation is given by rewriting rules operating over multisets of objects (representing 
sets of objects with associated quantities) in cell-like compartmental architectures with polarizations (membrane 
electric charges). Objects represent the formal counterpart of the molecular species (ions, proteins) floating inside 
cellular compartments, while the evolution rules represent the formal counterpart of chemical reactions. 

Three main research directions are usually considered in membrane computing: modelling of biological 
phenomena, computational power in terms of the classical notion of Turing computability using a minimal quantity 
of ingredients, and efficiency in algorithmically solving NP-complete problems in polynomial time (by using 
an exponential quantity of ingredients) [26]. 

Considering P systems with moving membranes [12], it is possible to model a part of the immune 
system [11], to get Turing completeness by using a small number of membranes [16], and to solve efficiently 
hard problems [14]. Moreover, these P systems are related to the process calculus of mobile ambients [9, 10]. 

Gh. Păun presented the following question (problem F in [25]): “Can the polarizations be completely 
avoided? The feeling is that this is not possible, and such a result would be rather sound: passing from no 
polarization to two polarizations amounts to passing from non-efficiency to efficiency.” 

Inspired by this question, we analyze minimal ingredients needed to get the Turing completeness. In 
particular, we show that two ingredients of some type are enough to obtain Turing completeness. There are 
several similarities: two is the minimal number of regions in a distributed system, two is the number of registers in 
a Turing complete register machine, and two is the number of states in the smallest unit of memory that is the 
bit. Focusing on membrane systems, the minimal number of ingredients needed in order to obtain Turing 
completeness for membrane systems is: two polarizations are enough in active membranes (Section 3), two 
catalysts in catalytic P systems (Section 4), either promoters or inhibitors of weight two, as well as two 
membranes with one catalyst and one promoter/inhibitor (Section 5), two membranes in splicing P systems 
(Section 6) and two membranes in P systems with symport/antiport rules (Section 7). 
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1. PREREQUISITES 

The set of non-negative integers is denoted by ℕ. Given a finite alphabet V = {a1, … , an}, the free 
monoid generated by V under the operation of concatenation is denoted by V∗. The elements of V∗ are called 
strings, and the empty string is denoted by λ. The number of occurrences of a symbol ai in a string x is 
denoted by 

iax || , while the length of a string x is denoted by ∑=
i ia axx |||| . The Parikh vector associated 

with a string x with respect to V is (
1

|| ax ,…. , 
nax || ). The Parikh image of an arbitrary language L over V is 

the set of all Parikh vectors of strings in L, and is denoted by Ps(L). For a family of languages FL, the family 
of Parikh images of languages in FL is denoted by PsFL. A multiset over V is a mapping f : V → ℕ; it can be 
represented by )()(

1 ,...,1 naf
n

af aa . The families of regular and recursively enumerable languages are 

denoted by REG and RE respectively, and the family of Turing computable sets of non-negative integers by 
NRE. For more details of formal language theory the reader is referred to the handbook in this area [27].  

2. P SYSTEMS WITH ACTIVE MEMBRANES 

We consider membrane systems with active membranes [23] without division and dissolution rules 
(these rules are not needed here). 

 
Definition 1. A P system with active membranes of degree d is a tuple 

Π = (O, H, E, μ, w1, …, wd, e1, …, ed, R), where: 
• O is a finite non-empty alphabet of objects; 
• H is a finite set of labels for membranes; 
• E is the set of electrical charges for membranes;  
• μ is a membrane structure with membranes labelled by elements of H; 
• w1, …, wd ∊ *O  describe the initial multisets of objects placed in μ; 
• e1, …, ed are the initial electrical charges of the d membranes of μ; 
• R is a finite set of rules: 

(a)  [a → w i
h] , a ∊ O, v ∊ *O , h ∊ H, i ∊ E     object evolution rules 

 An object a placed in a membrane labelled by h with polarization i is rewritten into the multiset w. 
(b) a[ i

h] → [b j
h] , a, b ∊ O, h ∊ H, i, j ∊ E     communication rules 

 An object a is sent into a membrane labelled by h, becoming b, possibly changing the polarization. 
(c) [a i

h] → b[ j
h] , a, b  O, h ∊ H, i, j ∊ E     communication rules 

 An object a, placed into a membrane labelled by h, is sent out of membrane h and becomes b, 
possibly changing the polarization. 

   (cλ) [a i
h]  → b[ j

h] , a ∊ O, b ∊ *O ∪{λ}, h ∊ H, i, j ∊ E    communication rules 
  Same as rule (c), except that b can also be deleted. 

The rules of such a P system can be applied in a maximal parallel manner in one step (all rules should be 
used in parallel to the maximum degree possible), with the following constraint: at most one of the rules of 
types (b), (c) and (cλ) can to be used for each membrane in a given step. If no rule can be applied, the 
computation halts. Outputs are associated only with halting computations in the form of the objects sent into 
the environment during the computation. By NOPm(activen, D) and PsOPm(activen,D) we denote the family 
of all numbers, and respectively vectors of numbers computed by P systems with at most m membranes 
allowing n polarizations, using rules of the types contained in D, where ∅ ⊂ D ⊆ {a, b, c, cλ }. 

It is enough to have two polarizations to achieve Turing completeness. 

THEOREM 1 [5]. NOP1(active2, {a, cλ }) = NOP2(active2, {a, c}) = NRE, and 
        PsOP1(active2, {a, cλ }) = PsOP2(active2, {a, c}) = PsRE. 
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Turing completeness can be obtained without using membrane polarizations, but using division rules and a 
membrane structure where for each symbol appearing in the simulated matrix grammar there appear two 
membranes [1]. By considering also membrane creation rules, P systems with active membranes using two 
membrane labels and at most two objects are Turing complete [6]. 

3. CATALYTIC P SYSTEMS 

Definition 2. A catalytic P system is a construct  
Π = (O, C, μ, w1, …, wd, R1, …, Rd, io), where: 

• d, O, μ, w1, …, wd are as in Definition 1; 

• C ⊆ O is the alphabet of catalysts; 
• Ri , 1 ≤ i ≤ d, are finite sets of evolution rules over O associated with the regions of μ; the rules 

have the forms ca → cv or a → v, where c is a catalyst, a is an object from O\C, and v is a string 
over ((O\C) × {here, out, in}); 

• io ∊ {0, 1, … , d} indicates the output region of  Π. 

The objects are transported through membranes according to the targets in, out and here. The evolution 
is similar with the one of the systems described in the previous section. A membrane system Π is called 
purely catalytic if every evolution rule involves a catalyst. The families of all sets of numbers or sets of 
vectors computed by [purely] catalytic P systems with at most m membranes and the set of catalysts 
containing at most k elements are denoted by NOPm([p]catk) and PsOPm([p]catk), respectively. We use the 
bracket notation [p] to specify the parameter p to be present. The next result claims that both catalytic P 
systems with no catalyst and purely catalytic P systems with one catalyst can only generate regular sets. 

THEOREM 2. [26] PsOP1(cat0) = PsOP2(pcat1) = PsREG. 

According to [4], for the (purely) catalytic P systems it is still open one of the challenging questions in 
the area of P systems, namely whether we need two or three catalysts to get Turing completeness. Now we 
have the following result. 

THEOREM 3. [17] NOP2(cat2) = NOP2(pcat3) = NRE, and PsOP2(cat2) = PsOP2(pcat3) = PsRE. 

Bistable catalysts (2cat) represent a special extension of the concept of catalysts able to change 
between two states when being used in a rule, i.e. the catalytic rules are of the form ca → c’v and c’a → cv. 

THEOREM 4. [2] NOP1(2cat1) = NRE. 

Mobile catalysts (mcat) are allowed to have targets, i.e. the catalytic rules have the form ca → (c, tar)v 

with c ∊ C and tar ∊ {here, out, in}. 

THEOREM 5. [19] NOP2(mcat2) = NRE. 

The concept of matter/antimatter was used in P systems: for each object a, the antimatter object a- exists. We 
consider catalytic P systems extended by allowing annihilation rules aa- → λ. Other rules can be applied only 
if no annihilation rule could bind the corresponding objects. We can prove that these two types of objects 
(matter and antimatter) are powerful enough such that catalysts are not needed [3]. 

THEOREM 6. NOP1 (antim/pri) = NRE and PsOP1 (antim/pri) = PsRE. 

Using rules of the form u → v and no catalyst, the cooperative rules of degree two of the form ab → v 
are enough to obtain Turing completeness [24], while non-cooperative rules of the form a → v are not [22]. 
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5. P SYSTEMS WITH PROMOTERS AND INHIBITORS 

Membrane systems with promoters/inhibitors [15] represent an extension of the usual membrane 
systems. A rule with promoters of weight k has the form u → v|p, where u, v, p ∊ *O  and |p| ≤ k; such a rule 
can be applied only in the presence of the multiset of promoters p. The weight k can be interpreted here as 
the quantity of the promoters. A rule with inhibitors of weight k has the form u → v |¬i, where u, v, i ∊ *O  
and |i| ≤ k; such a rule can be applied only in the absence of the multiset of inhibitors i. 

The difference between catalysts and promoters consists in the fact that catalysts directly participate in 
rules (but are not modified by them) and the number of applications of a catalytic rule cannot exceed the 
number of existing catalysts, while in the case of promoters it is possible to apply a rule as many times as 
possible in the presence of the corresponding promoter. Thus, the catalysts inhibit the high parallelism of the 
system while the promoters facilitate it (and guide the computation process). 

We denote by PsOPm(α,β), where α ∊ {ncoo, coo} ∪ {catk | k ≥ 0} and β ∊ {proRw, inhRw}, the family 
of sets of vectors of natural numbers generated by P systems with at most m membranes in which the 
evolution rules can be either non-cooperative (ncoo), cooperative (coo) or catalytic by using at most k 
catalysts (catk), as well as either promoters (proRw) or inhibitors (inhRw) of weight at most w. 

P systems with inhibitors generate exactly the same family of Parikh sets as ET0L systems. P systems 
with promoters generate more than the family of Parikh sets of ET0L languages. 

THEOREM 7 [28]. PsOP1(ncoo, proR1) ⊇ PsOP1(ncoo, inhR1) = PsET0L. 

Using either promoters or inhibitors of weight two, the P systems are Turing complete. 

THEOREM 8 [8]. PsOP1(ncoo, proR2) = PsOP1(ncoo, inhR2) = PsRE. 

The following Turing completeness results concern membrane systems with two membranes, one 
catalyst and either one promoter or inhibitor. 

THEOREM 9 [18]. PsOP2(cat1, proR1) = PsOP2(cat1, inhR1) = PsRE. 

6. SPLICING P SYSTEMS 

Splicing rules are frequently written as u1#u2$u3#u4, where u1, u2, u3, u4 ∊ O and {$,#} ∉ O. The 
strings u1u2 and u3u4 are called splicing sites. 

Definition 3. A splicing P system of degree d ≥ 1 is a construct Π = (O, T, μ, w1, …, wd, R1, …, Rd), 
where: 

• O, μ, and wi are as in Definition 1; 
• T ⊆ O is the terminal alphabet; 
• Ri, for i∊ {1,…, d}, are sets of evolution rules of the form (r; tar1, tar2) associated with the 

compartments 1,…, d of μ, where r is a splicing rule over O and tar1, tar2 ∊ {here, in, out} are 
target indicators. 

A configuration of such a system is a tuple (M1,…, Md) over O. Formally, for i ∊ {1,…, d}, if 
x = x1u1u2x2, y = y1u3u4y2 ∊ Mi and (r = u1#u2$u3#u4; tar1, tar2) ∊ Ri, x1, x2, y1, y2, u1, u2, u3, u4 ∊ O, the 
splicing (x, y) ⊢r (z,w), z,w ∊ *O can take place in i. The strings z and w pass to the compartments indicated 
by tar1 and tar2. A splicing P system is called non-extended if O = T. We use ELSPm(spl, in) for the family 
of languages generated by splicing P systems having a degree at most m, and LSPm(spl, in) for the non-
extended case. The following theorem claims that splicing P systems with two compartments may generate 
any recursively enumerable language. 

THEOREM 10 [26]. ELSP2(spl, in) = LSP2(spl, in) = RE. 
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7. SPLICING P SYSTEMS 

Definition 4. A P system with antiport and symport rules of degree d ≥ 1 is a construct 
Π = (O, T, E, μ, w1, …, wd, R1, …, Rd, io), where: 

• O, μ, w1, …, wd and io are as in Definition 2, while T is as in Definition 3; 
• E ⊆ O is a set of objects found in an unbounded number in the environment; 
• Ri , for i∊ {1,…, d}, are sets of evolution rules (u, out; v, in), with u ≠ λ and v ≠ λ (antiport rule), 

and (x, out) or (x, in), with x ≠ λ (symport rule). 

The antiport rule (u, out; v, in) in Ri exchanges the multiset u inside membrane i with the multiset v 
outside membrane i; the symport rule (x, out) sends the multiset x out of membrane i, and (x, in) takes x in 
from outside membrane i (if i is the skin membrane, then x must contain at least one symbol not in E). 

When using a minimally parallel mode min, in each transition step we choose at least one rule from 
every set Ri of rules. anti s

k  (symk) indicates that only antiport (symport) rules of weight at most k and size at 
most s are used, where the weight of an antiport rule (u, out; v, in) is max{|u|, |v|} and the size is |u|+|v|. The 
families of sets N(Π) and Ps(Π) computed by such symport/antiport P systems with at most d membranes 
with rules of type α working in min mode are denoted by NOPd(α,min) and PsOPd(α,min), respectively. 

The first result concerning P systems with symport/antiport rules working in maximal parallel way 
claims that systems of two membranes using symport and antiport rules of weight two are enough for Turing 
completeness. In [21] the authors claim that they do not know whether this result is optimal, but it seems that 
simpler systems are not so powerful. 

THEOREM 11 [21]. NOP2(anti2, sym2) = NRE. 

P systems with minimal symport/antiport rules with only two membranes are Turing complete [7]. 
Turing completeness can also be obtained using two membranes when working in the minimally parallel 
mode [26]. 

THEOREM 12. NOP2(anti 3
2 ,min) = NOP2(sym3,min) = NRE,  

             and PsOP2(anti 3
2 ,min) = PsOP2(sym3,min) = PsRE. 

Another situation is given by P systems with string objects [22], where strings are used instead of 
objects and the evolution rules are based on string processing operations (in particular, on rewriting). Under 
some restrictions over rules, two membranes are enough to generate all RE languages. 

The P systems were extended to tissue P systems with communication rules, where one rule (if 
applicable) is used on every channel. Turing completeness can be obtained either with one cell and two 
channels between the single cell and the environment, or with two cells and one channel between them [20]. 

8. CONCLUSION 

In this paper we present a survey of computability results in membrane computing. It is worth noting 
the relevance of number two in reaching Turing completeness for these bio-inspired models; the number of 
two ingredients often represents a delimiting boundary. In many cases, passing from one ingredient to two 
ingredients represents the border between Turing non-completeness to Turing completeness. We are not 
aware of any other approach that comprehensively investigates when and why this delimiting boundary is 
found. Here we argued that two ingredients are enough to obtain Turing completeness for various P systems: 
(i) in active membranes with polarizations, two polarizations are enough for Turing completeness (neither 
dissolution nor division rules are used); (ii) in catalytic P systems either two catalysts or a bi stable catalyst (a 
catalyst with two states) or two mobile catalysts placed in two membranes are enough; (iii) in splicing P 
systems, P systems with symport/antiport rules and P systems with string objects two membranes are enough.  

In [13] we prove that two membranes moving according to the endocytosis and exocytosis rules inside 
a skin membrane represent the minimum number of mobile membranes needed to obtain Turing completeness. 
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