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Abstract.  Divergence measures are of great importance in statistical inference. Equally important are 
their limiting versions, known as divergence rates. In this work we focus on generalized divergence 
measures for Markov chains. We consider generalizations of Alpha divergence measure (Amari and 
Nagaoka [3]) and Beta divergence measures (Basu et. al [6]) for Markov chains and investigate their 
limiting behavior. This work is continued in [4], where we study the corresponding weighted generalized 
divergence measures and the associated rates and in [5], where we present generalized Cressie and 
Read power divergence class of measures and numerically investigate some properties of all these 
generalized divergence measures and rates. 
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1. INTRODUCTION 

Shannon’s 1948 paper provided the foundation for the development of information theory. Shannon 
introduced, through an axiomatic derivation, the notion of entropy as a measure of information for a 
probability distribution. The notion was quickly not only generalized to other entropy measures but also 
extended to measure the mutual information concerning two distributions and a plethora of the so-called 
divergence measures was introduced. Such measures of divergence are used as indices of similarity or 
dissimilarity between populations. In other words, they are used to measure the distance or the discrepancy 
between two distributions. It should be also noted that such measures are used for the construction of model 
selection criteria (Akaike [1], Cavanaugh [7], Dutta et al. [10]).  

The original entropy measure introduced by Shannon [24] is given by  

( ) ( ) log dS SI X I p p p μ≡ = − ,∫  

where X  is a random variable with density function ( )p x  and μ  a probability measure on R. Shannon 
derived the discrete version of ( )SI p ,  where p  is a probability mass function, and named it entropy 
because of its similarity with thermodynamics entropy. The continuous version was defined by analogy. For 
a finite number of points, Shannon’s entropy measures the expected information of a signal transferred 
without noise from a source X  with density ( )p x  and is related to Kullback-Leibler (KL) divergence 
through the expression  

( ) ( ) ( )S S KLI p I h I p h= − , ,   

where h  is the density of the uniform distribution and the Kullback-Leibler divergence between two 
densities ( )p x  and ( )q x  is given by  

 ( ) log( )dKLI p q p p q μ, = − / .∫   (1) 
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Many generalizations of Shannon’s entropy were hereupon introduced. The Rényi’s entropy [23] is given by 

 
1( ) log d 0 1

1
RI p pα α μ α α

α
, ⎛ ⎞= , > , ≠⎜ ⎟− ⎝ ⎠

∫  (2) 

and Liese and Vajda’s [20] extension of Rényi’s entropy is given by  

( )
1( ) log d 0,1.

1
lvRI p pα α μ α

α α
, ⎛ ⎞= , ≠⎜ ⎟− ⎝ ⎠

∫  

Note that for 1α →  and 0α →  we get  

( ) ( ) ( )
1 0

lim and lim log ( )lv lvR RSI p I p I p p x dxα α

α α

, ,

→ →
= = ,∫  

where the last one is the Burg’s entropy (see, e.g., Kapur [18]). As mentioned earlier, a measure of 
divergence is used as a way to evaluate the distance (divergence) between any two populations or functions 
p  and q . Among the most popular measures of divergence are the Kullback-Leibler measure of divergence 

(Kullback and Leibler [19]) given in (1) and the Csiszár’s ϕ -divergence family of measures (Csiszár [9], Ali 
and Silvey [2]) given by  

                                                     
0

( ) pI p q q d
q

ϕ ϕ μ
∞ ⎛ ⎞

, = ,⎜ ⎟
⎝ ⎠

∫                                                                         (3) 

where ( )xϕ  is a continuous, differentiable and convex function for 0x ≥ .   
In the case of the KL measure, the Liese and Vajda’s corresponding generalization is given by  

                                 11( ) log 0 1
( 1)

RI p q p q dα α α μ α
α α

, −⎛ ⎞, = , ≠ , .⎜ ⎟− ⎝ ⎠
∫                                                    (4) 

Equally important to the above divergence measures are their limiting versions, known as divergence 
rates. Besides the numerous limiting properties of these special divergences, such rates can be used in 
statistical inference in exactly the same manner as the typical (non-limiting) divergence measures. For a 
comprehensive review of various properties of rates we refer to Gray [13]. Formally, the divergence rate of a 
general divergence measure, say DI , between two distributions p  and q  is defined by  

1lim ( )D

n
I p q

n→∞
, .  

Results for the rates of the standard KL and the Rényi measures for Markov chains have been provided 
by Rached et. al [21, 22]. The authors also provide the connection to the Shannon entropy rate. Results on 
the entropy of a more general class of stochastic processes, the processes with complete connections, were 
obtained by Iosifescu [15] and Iosifescu and Theodorescu [16].  

The present work is concerned with measures of divergence for Markov chains. We consider 
generalizations of the measures presented above and we investigate their limiting behavior. 

2. ALPHA AND BETA DIVERGENCE RATES FOR MARKOV CHAINS 

In this section we discuss two broad classes of divergence measures, namely the Alpha and Beta 
measures and provide the basic results on their rates. Let ( )A μ,Ω,  be a measurable space and pμ  and qμ  
some finite measures (not necessarily probability measures) defined on this space, with densities p  and q  
with respect to a certain measure μ.  The Alpha measure between pμ  and qμ  or, equivalently, between p  
and q,  (Chernoff [8], Amari and Nagaoka [3]) is given by  

dx 

d μ

d μ
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                           11( ) ( ) ( ) ( ) ( 1) ( ) ( )
( 1)AD p q p x q x p x q x d xα α α α μ

α α
−⎛ ⎞, = − + − ,⎜ ⎟− ⎝ ⎠

∫                            (5) 

where, for 0α =  and 1,  it is defined by continuity. The same prolongation by continuity will be used for all 
the divergence measures considered in the rest of the paper. Through the transformation  

                               
0

1 2 1 2
0 ( ) ( ) ( ) log ( ) ( ) ( )

c
c c c cc p x q x d x p x q x d xμ μ⎛ ⎞→ ⎜ ⎟

⎝ ⎠
∫ ∫                                             (6) 

the Alpha measure takes the form  

                              
1

1
1 ( ) ( ) ( )( ) log

( 1)
( ) ( ) ( ) ( )

AG
p x q x d xD p q

p x d x q x d x

α α

α α

μ
α α

μ μ

−

−

⎛ ⎞
⎜ ⎟
⎜ ⎟, = .
⎜ ⎟− ⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

∫
∫ ∫

                                (7) 

It is easy to see that, by setting ( ) ( )
( ) ( )d x
p x

p x
p x μ

=
∫

  and ( ) ( )
( ) ( )d x
q x

q x
q x μ

=
∫

, the measure (7) becomes 

the so called normalized Rényi measure 

                               11( ) log ( ) ( ) ( )
( 1)AGD p q x x d xp qα α μ

α α
−⎛ ⎞, = .⎜ ⎟− ⎝ ⎠

∫                                                       (8) 

The Beta divergence between p  and q  (multiplied by the constant 1 (1 )α/ + ) introduced by Basu et. al [6] 
is given by  

                             1 11 1 1( ) ( ) 1 ( ) ( ) ( ) ( )
1BD p q q x p x q x p x d xα α α μ

α α α
+ +⎛ ⎞⎛ ⎞, = − + + ,⎜ ⎟⎜ ⎟+ ⎝ ⎠⎝ ⎠

∫                        (9) 

which under the same transformation takes the form  

                               
1( ) log ( ) ( ) ( )BGD p q p x x d xqα μ
α

⎛ ⎞, = − ,⎜ ⎟
⎝ ⎠
∫                                                                (10) 

where, in this case,  

 1 (1 ) 1 (1 )
1 1

( ) ( )( ) ( )
( ) ( ) ( ) ( )

p x q xp x and q x
p x d x q x d x

α α
α αμ μ

/ + / +
+ +

= = .
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
∫ ∫

 

Note that in all the previous definitions of divergences, one can consider either the case where the finite 
measures pμ  and qμ , defined on a measurable space (A, Ω, μ) are absolutely continuous with respect to a 
certain measure μ  (Lebesgue measure, for instance) and have associated densities p  and q , or consider the 
discrete case, and p and q  be the associated mass functions. As in the discrete case we can write the 
divergences in an integral form, taking μ  as the counting measure on A,  we expressed up to here the 
divergences in integral forms (i.e., not in terms of a sum). Nonetheless note also that, when we will be 
interested in divergences for Markov chains, we will use the notations with sums, not with integrals, because 
we consider only finite Markov chains.  

Let us now focus on divergence measures for Markov chains. Let ( )n n NX ∈  be an ergodic time-
homogeneous Markov chain with finite state space 1{ … M}χ = , , .  For this Markov chain, we consider two 

d d

d

d d

d

d 

d

and

dd 

d μ 
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different probability laws. Under the first law, let 1( )ip P X i i χ= = , ∈ ,  denote the initial distribution of the 

chain and 1( )ij k kp P X j X i i j χ+= = | = , , ∈ ,  the associated transition probabilities. Let also np  denote the 

joint probability distribution of 1 2( )nX X … X, , , ,  i.e.,  

1 1 2 11 1 1 1( ) ( )
n nn n n n i i i i i ni P X i …X i p p …p i … i χ
−: = = , = = , , , ∈ ,p  

were we denoted by 1 ni :  the n -tuple 1( ) n
ni … i χ, , ∈ .  Similarly we define under the second law iq , ijq ,  

1( )n ni :q  and n .q  Under this setting of finite state space Markov chains, the Alpha-Gamma measure between 
the two models is defined as the Alpha-Gamma measure between the two joint probability distributions np  
and n ,q  that is  

                            
( ) ( )1

1 1

1
1 1

1

1 1

( ) ( )1( ) log
( 1) ( ) ( )n

n n n
n n

n n n n
AG n n

i
n n n ni i

i iD
i i

α α

α α
χ

χ χ
α α

:
: :

−
: :

−
∈

: :∈ ∈

⎛ ⎞
⎜ ⎟

, = × .⎜ ⎟− ⎜ ⎟
⎝ ⎠

∑
∑ ∑

p qp q
p q

          (11) 

This can be written under the normalized form  

                                
1

1
1 1

1( ) log ( ) ( )
( 1) n

n

AG n n n nn n
i

D i iα α

χα α
:

−
: :

∈

⎛ ⎞
, = ,⎜ ⎟⎜ ⎟− ⎝ ⎠

∑p q p q                                                 (12) 

where  

 
1 1 2 1 1 1 2 1n n n nn i i i i i n i i i i i… …p p p q q q

− −
= , = ,p q  

with ip ,  ijp ,  iq  and ijq ,  i j χ, ∈ ,  defined by  

                                
( ) ( )

1 1

1 1

1 1( ) ( )n n
n n

iji
i ijn n

n n n ni i

pp
p p

i i
χ χ: :

/ /

: :∈ ∈

= , = ,
∑ ∑p p

                                                  (13) 

                              
( ) ( )

1 1

1 1

1 1( ) ( )n n
n n

iji
i ijn n

n n n ni i

qq
q q

i i
χ χ: :

/ /

: :∈ ∈

= , = .
∑ ∑q q

                                                     (14) 

For the Beta-Gamma measure ( )BG n nD p q,  the corresponding form is  

 

( ) ( )1
11

1 1
1 (1 ) 1 (1 )

11
11

( )

( ) ( )1 log
( )( )n

n nn
nn

BG n n

n n n n

i
n nn n ii

D

i i

sum ii

α

α α
ααχ

χχ
α

:
::

: :
/ + / +

++∈
:: ∈∈

,

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟= − ⋅ .⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑
∑

p q

p q

qp

 

As previously, this can be written under the normalized form  

                              
1

1 1
1( ) log ( ) ( )

n
n

BG n n n nn n
i

D i iα

χα
:

: :
∈

⎛ ⎞
, = − ,⎜ ⎟⎜ ⎟

⎝ ⎠
∑p q p q                                                             (15) 

where  
 

1 1 2 1 1 1 2 1n n n nn i i i i i n i i i i i… …p p p q q q
− −

= , = ,p q  

=
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with ip ,  ijp ,  iq  and ijq ,  i j χ, ∈ ,  defined by  

                            
( )

1

1 (1 )
1

1( )n
n

i
i n

n ni

p
p

i
α

α
χ:

/ +
+

:∈

= ,
∑ p

     
( )

1

1 (1 )
1

1( )n
n

ij
ij n

n ni

p
p

i
α

α
χ:

/ +
+

:∈

= ,
∑ p

                              (16) 

                             
( )

1

1 (1 )
1

1( )n
n

i
i n

n ni

q
q

i
α

α
χ:

/ +
+

:∈

= ,
∑ q

   
( )

1

1 (1 )
1

1( )n
n

ij
ij n

n ni

q
q

i
α

α
χ:

/ +
+

:∈

= .
∑ q

                                (17) 

The following theorems provide the divergence rates of Alpha-Gamma and Beta-Gamma measures. 
Since the R  matrices used in the proofs of Theorems 1 and 2, although they differ, they have the same 
structure, we will treat the two matrices in a similar way and we will proceed with a detailed proof of 
Theorem 1, only.  

THEOREM 1. Under the setting of the present section, we have  

1 1lim ( ) log ( )BG n nn
D

n
λ α

α→∞
, = − ,p q  

where ( ) lim ( )n nλ α λ α→∞:=  (assumed to exist), where ( )nλ α  is the largest positive eigenvalue of 

( ) ( ( ))ij i jR n r χα , ∈= ,  where  

( ) ( )
1 1

1 (1 ) 1 (1 )
11

1 1

( )
( ) ( )n n

n n

ij ij
ij ij ij n n

n n nni i

p q
p qr

i ifq

α

α
α α

αα
χ χ

α

: :

/ + / +
++

: :∈ ∈

⎛ ⎞
⎜ ⎟

= = ,⎜ ⎟
⎜ ⎟
⎝ ⎠∑ ∑p

 

with ijp  and ijq  defined in Equations (16) and (17), respectively.  
Proof. Define  

1 1 1 2 1 2 1 1

1 1

1 1( ) ( ) ( )
n n n n

n n
n n

BG n nn n i i i i i i i i i i
i i

V n i i …p q p q p qα α α α

χ χ

α
− −

: :

: :
∈ ∈

, = = .∑ ∑p q  

 
Define also the column vector 1 2( )Ms s s … s ′= , , ,  by  

( ) 1i i is i … Mp qαα = , = , , .  

 
Let ( )nλ α  be the largest positive real eigenvalue of the matrix ( )R n  with associated positive right 

eigenvector  
1 2( )Mb b b … b ′= , , , , so that 1 1( ) ( )n n

nn b bR λ α− −= .  Notice that  

1( 1) ( 1)( ) ( ) ( )nn n
ij ijL n i U

j j

b b br r
χ χ

α λ α α−− −

∈ ∈

≤ ≤ ,∑ ∑  

where Lb  and Ub  are the minimum and the maximum element of b  and ( 1)( )n
ijr α−  is the ( )i j,  element of 

1( )n nR
− . It is now easy to see that  

( )( 1)

1

( ) ( )( ) ( )

( )

n
ijii i i ii ji i

n
U n L

ss b s ha br
b b

χ χχ χ
α αα

λ α

−
∈ ∈∈ ∈

−≤ ≤ .
∑ ∑∑ ∑

 

Notice now that  
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( 1)( ) exp( ( )) ( ) ( )n
ijBG BG n n i

i j
V n D s r

χ χ

α α α α−

∈ ∈

⎛ ⎞
, = − , = ,⎜ ⎟

⎝ ⎠
∑ ∑p q  

so that the above inequality easily becomes  

1

1

( )1 1 1log log( ( )) ( )

( )1 1log log( ( ))

i ii n
n BG n n

L

i ii n
n

U

s b
D

n b n n

s b

n b n

χ

χ

α
λ α

α α

α
λ α

α α

∈ −

∈ −

⎛ ⎞
⎜ ⎟− − ≤ ,
⎜ ⎟
⎝ ⎠
⎛ ⎞
⎜ ⎟≤ − − .
⎜ ⎟
⎝ ⎠

∑

∑

p q

 

 
Taking now the limit as n  tends to infinity, the result is immediate, provided that the first term in the lower 
bound as well as in the upper bound tends to 0 . In fact, since Ub  and Lb  are fixed, it is sufficient to show 

that log( ( ) )i ii
s b

χ
α

∈∑  is bounded. By the definition of is , ip , and iq  we have  

1

1

1
1

1
1

1log( ( ) ) log( ) log ( )
(1 )

log ( )
(1 )

n
n

n
n

i i i i i n n
i i i

n n
i

s b p q b i
n

i
n

α α

χ χ χ

α

χ

α
α

α
α

:

:

+
:

∈ ∈ ∈

+
:

∈

⎛ ⎞
= − ⎜ ⎟⎜ ⎟+ ⎝ ⎠

⎛ ⎞
− .⎜ ⎟⎜ ⎟+ ⎝ ⎠

∑ ∑ ∑

∑

p

q

 

Observe now that by Schwarz inequality ( )
1

11 1
1( )n

n
n n ni

i n αα
χ:

++
:∈

≤ ,∑ p  which implies 

1

1
1( ) (1 )n

n
n ni

i O nα α
χ:

+
:∈

= /∑ p . The same holds for 
1

1
1( )n

n
n ni

iα
χ:

+
:∈∑ q  and the result follows. 

 
THEOREM 2.  Under the setting of the present section, we have  

1 1lim ( ) log ( )
( 1)AG n nn

D
n

λ α
α α→∞

, = ,
−

p q  

where ( )λ α  is the largest positive eigenvalue of ( ( ))ij i jR r χα , ∈= ,  where  

 
( ) ( )

1 1

1
1

(1 )

1 1

( )
( ) ( )n n

n n

ij ij
ij ij ij n n

n n n ni i i

p q
p qr

i i

α α
α α

α α

χ

α

: :

−
−

/ − /

: :∈ ∈

= = ⋅ ,
∑ ∑p q

 

with ijp  and ijq  defined in Equations (13) and (14), respectively.  

Proof. Notice that the form of the vector is  is given by  

( ) ( )
1 1

1
1

1 1

1( )
( ) ( )n n

n n

a
i i i

n n n ni i

s p q
i i

α
α α

χ χ

α

: :

−
−

: :∈ ∈

= .
∑ ∑p q

 

The proof follows exactly the same steps as that of Theorem 1. Note that, in this case,  

1log( ( ) ) log( )i i i i i
i i

s b p q bα α

χ χ

α −

∈ ∈

= .∑ ∑  
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Remarks: 

1. The Alpha-Gamma divergence given in (7) coincides with the Liese & Vajda’s measure given in (4) 

for probability distributions, namely under the assumptions that ( ) ( ) ( ) ( ) 1q x d x p x d xμ μ= = .∫ ∫  In that 
sense, Alpha-Gamma divergence is a natural generalization of the Rényi measure for general distributions.  

2. The Alpha divergence is related to the Csiszár’s family of measures (Csiszár [9], Ali and Silvey [2]). 
Indeed, the two families coincide if for Csiszár measure we take  

1( ) 1 ( 1)
(1 )

u u uαϕ α
α α

⎡ ⎤= − − − .⎣ ⎦−
 

3. For 1α →  we obtain the Kullback-Leibler measure for the Alpha, the Alpha-Gamma and the 
Csiszár’s measures. For 0α → ,  the Beta and Beta-Gamma measures tend to the Kullback-Leibler measure, 
while for 1α =  the Beta measure becomes the 2L  distance. Observe that here we are referring to the 
generalized KL measure in the sense that general distributions (non-necessarily probability) are allowed. 
Sometimes, the term “Generalized KL” measure is used.  

4. The Alpha and Beta measures are related to the Gamma-family of divergences given by  

 
( )

( )
1 1

1

1

1 1

1
1 1

( ) ( )1( )
( 1) ( ) ( )

n n
n n

n
n

n n n ni i
G n n

n n n ni

i i
D

i i

α
α α

χ χ
α

α
χ

α α
: :

:

−

: :∈ ∈

−
: :∈

, = .
−

∑ ∑
∑

p q
p q

p q
  

The measure was introduced by Fujisawa and Eguchi [12] and allows super robust parameter 
estimation. This measure is useful especially if outliers are present. The authors have proved that the bias due 
to outliers becomes significantly small even if heavy contamination is present. The measure is referred to as 
γ -cross entropy and it is the same as the logarithm of the cross entropy proposed by Jones et al. [17] on the 
basis of Windham [28].  

5. Note that the same type of results as those presented in Theorems 1 and 2 hold true also for Markov 
chains of arbitrary order 1k k, > .  Indeed, if ( )n n NX ∈  is a Markov chain of order k  with state space χ,  

then ( )n n NY ∈ ,  1 1( )n n n n kY X X … X+ + −= , , , ,  is a Markov chain of order 1, with state space kχ  and for this 
Markov chain the mentioned results hold true.  

6. Rényi and Liese & Vajda’s entropy measures and their rates are closely related to the Kullback-
Leibler measure and the associated rate given by Rached et. al [22]. Consider the Markov chain setting of the 
previous section. Then, the Kullback-Leibler divergence is given by  

 
1

1
1

1

( )( ) ( ) log
( )n

n

n n
KL n n n n

i n n

iD i
iχ:

:
:

∈ :

⎛ ⎞
, = .⎜ ⎟

⎝ ⎠
∑ pp q p

q
  

The rate of ( )KL n nD ,p q  can be found in Rached at. al (2004) and is given by  

 
1lim ( ) log ij

KL n n i ijn i j ij

p
D p

n qχ χ

π
→∞

∈ ∈

⎛ ⎞
, = ,⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑p q   

where  
1( )M…π π π ′= , ,  is the unique stationary distribution associated with the measure p  (assumed to 

exist and to be unique). Recall that the discrete version of Shannon’s entropy for a Markov chain is given by  

( )
1

1 1( ) log ( )
n

n

S
n n n n n

i

I i i
χ:

: :
∈

= − ∑p p p  

and it is related to the KL divergence given in (2) through the expression  
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 ( ) log ( )S
n KL nI n M D= − , ,p p u   

where M  is the number of states and u  is the uniform distribution over the M  values/states. As a result, 
using (3), the rate of Shannon’s entropy is given by  

( )1 1lim lim ( ) logS
n KL nn n

I D M
n n→∞ →∞

= − , + .p p u  

Observe that since u  is the uniform distribution, the above rate simplifies to  

( )1lim logS
n i ij ijn i j

I p p
n χ χ

π ⎛ ⎞
⎜ ⎟
⎝ ⎠→∞

∈ ∈

= − .∑ ∑p  

On the other hand, for the case of Liese & Vajda’s entropy, relation (4) takes the form  

 ( ) log ( )lvR
n AG n

n MI Dα

α
, = − , ,p p u   

so that, by Theorem 2, the resulting rate takes the form  

 ( )1 1lim lim ( ) log ( )
(1 )

lvR
n AG nn n

I D
n

α λ α
α α

,

→∞ →∞
= , = .

−
p p u   

Note also that a similar result holds true for Rényi’s entropy rate.  
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