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The neutron subthreshold state topic is approached in terms of Gamow-Siegert state. The Gamow-
Siegert state is described in R- matrix theory by the channel equation 01 =− nnnLR  relating  decay 
channel logarithmic derivative nL  to R- matrix element nnR . The  equation for multichannel systems 
implies replacement of channel R-matrix element nnR  by its reduced counterpart nnR . This approach 
results in Heisenberg's S-matrix formula for a bound state as well as its generalization in case of 
multichannel systems. The dependence of reaction process on decay channel parameters, as threshold,  
results into renormalization of reduced width. The renormalization factor is R- matrix compression 
factor, ie wave function normalization over internal region to normalization over all space including 
decay channel. Both threshold compression factor and multichannel couplings imply a shift to 
threshold (origin) of the subthreshold pole.             
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1. INTRODUCTION 

The threshold states are of intrinsec interest due to their peculiar properties related to threshold, see 
(Baz, Zeldovich and Perelomov, 1971). Moreover they are of interest in nuclear astrophysics, in study of 
cold stellar cycles, see (Rolfs and Rodney, 1988). The connection between subthreshold states and 
spectroscopic asymptotic normalization coefficients was treated in K- and R-matrix terms by 
(Mukhamedzhanov and Tribble 1999). In this work the subject of subthreshold state and of its basic 
properties is approached in terms of Gamow-Siegert state.   

Gamow firstly (1928) introduced the concept of complex-energy eigenstate in order to describe α  
decay in a quasistationary formalism (eg in Baz, Zeldovich and Perelomov, 1971). Thereafter Siegert (1939) 
introduced a class of solutions of Schroedinger equation satisfying regularity conditions at origin and out 
wave boundary conditions at infinity. The solution a “pure out wave at infinity” corresponds to state's 
“radioactive” decay. The quasistationary state is a pure outgoing wave; the outgoing wave at infinity 
corresponds to the quasistationary state decay (eg Sitenko, 1990). The Siegert solution results in a discrete 
set of complex momenta λk  which coincide with poles of collision matrix in complex k-plane. Pure positive 
imaginary momenta represent bound states; pure negative imaginary ones represent virtual states and poles 
lying close but below real positive k-axis represent quasistationary or resonant states. The Siegert approach 
provides an unitary description of bound and quasistationary states.  

The Gamow-Siegert state was/is research topic in quasistationary formalism, see (Baz, Zeldovich and 
Perelomov 1971), or Green function formalism, see (Kukulin, Krasnopolsky and Horacek, 1989), or Rigged 
Hilbert Space formulation (Hernandez, Jauregui and Mondragon, 2003; Michel, Nazarewicz, Ploszajczak 
and Vertse, 2009). The Gamow-Siegert state  can be described also in R-matrix formalism by  a “decay 
channel equation”, relating channel R-matrix element and channel logarithmic derivative, (Comisel, Hategan 
and Ionescu, 2012).  
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2. ON GAMOW-SIEGERT STATE CONNECTION 
TO R- AND REDUCED COLLISION- MATRIX 

The channel equation nnn SR =−1  defines the bound state in R- matrix theory: a bound state appears at that 
energy at which the internal 1−

nnR  and external nS  logarithmic derivatives do match, (Lane and Thomas, 
1958). The channel logarithmic derivative nS  at negative energy becomes boundary condition at channel 
radius for a bound state. 

The logarithmic derivative of outgoing wave nL  is the corresponding, at positive energy, of the shift 
function nS  defined for negative energy. The logarithmic derivative of internal wave function 1−

nnR  has to 
equal, at channel radius, the logarithmic derivative of outgoing wave nL ; this condition corresponds to a 
quasistationary  state. 

The quasistationary state boundary condition is that of out wave at state energy λE , not at prescribed 
energy. The complex energy pole λE  is root of the implicit equation 0)()1 =− λλ EE nnn LR ( . As in the case of 
bound states, the equation yields a set of eigenenergies which now are complex. The energy and decay width 
of quasistationry state are both constants. Thus the Siegert equation 0)(1 =− λEnnnLR  defines both the bound 
state (below threshold) or quasistationary state (above threshold). The bound or quasistationary state is not 
more described by a R-matrix pole but rather by a channel state equation. 

In multichanel systems the Siegert equation becomes  0)()1 =− λλ EER nnn L( , where nnR  is reduced 
R-matrix element.  Observe that in the decoupling limit the equation 01 =−−

nnn RL describes either the bound 
state (below n-channel threshold) or quasistationary state (above n-channel threshold). The bound or 
quasistationary state, from closed or open channel, induces resonance in competing open channels of 
multichannel system; a phenomenon described in terms of reduced or effective operators. 

The concept of reduced or effective operator, previously designed  for R-matrix, (or K-matrix), can be 
extended to collision/scattering matrix (Hategan, 1978). The reason is the collision matrix is a primary 
concept in Scattering Physics, because it is associated with the whole dynamics of scattering process. The 
reduced collision matrix consists from collision matrix 0W  of 'bare' retained channels (uncoupled to 
eliminated ones) and from an effective term WΔ  representing the effect of eliminated channel(s) on the 
retained ones. The effective term contains the retained-eliminated channels couplings as well as a term 
related to dynamics of collision process in the eliminated channel n. 

The collision matrix in case of N channels is function of N-channel component of R-matrix, 
)(0

NN RfW ≈ . If an unoserved channel 1+= Nn  is coupled to the N observed ones, NNN WWW Δ+= 0 , then a 
reduced term of collision matrix appears, )( NN fW R≈Δ , and it is function of reduced R- matrix R , actually 
on Gamow-Siegert equation.  The effective term NWΔ  in the collision matrix, describing effect of the 
eliminated  channel n, should be valid  both below and above n-channel threshold. By coupling the 
eliminated channel to retained ones the reduced collision matrix term becomes proportional to Siegert term 

11 )]()([~ −− −Δ λλ ERE nnnN LW  (Hategan, Ionescu and Wolter, 2016). 
This qualitative approach to Gamow-Siegert states was formalized in terms of Bloch-Lane-Robson 

(Lane and Robson, 1966; Robson and Lane, 1967) formalism for quantum collisions, see (Comisel, Hategan 
and Ionescu, 2012). 

3. NEUTRON SUBTHRESHOLD  STATE 

The neutron subthreshold state in atomic nucleus can be either genuine bound state (in an isolated 
closed channel) or subthreshold resonance (in a closed channel which belongs to a multichannel system). An 
unitary approach to subthreshold states related to Gamow-Siegert state concept is here presented. 

The bound state is described in R-matrix theory (Lane and Thomas, 1958), by equation 1−= nnn RL  
relating n-channel logarithmic derivative nL  to R- matrix element, )/(2 EER nnn −= λλγ . A R-matrix state is 
transformed in a Siegert state provided boundary conditions are properly modified (Robson and Lane, 1967). 
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A modified boundary condition Bn implies a level shift (to be included in Eλ), a change in channel 
logarithmic derivative Ln→Ln–Bn but not in γ2λn reduced decay width provided Bn is constant.  

2 1 1 21/ d( ) / d d( ) / d 1/ .B BR E R B Eγ γ− −= − = − − =  (1)

The  Siegert boundary condition nB  at channel radius is just channel logarithmic derivative evaluated 
at level’s energy )( λELB nn = ; it results into )()()( λELELEL nnn −→  which in Thomas approximation (Lane 
and Thomas, 1958), is ( )d ( ) / dnE E L E Eλ λ− . This way the Siegert boundary condition results into  
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with 1nλβ ≤  (as d / d 0nL E ≥  at least for neutron case). The β  factor is a measure (Lane, 1970), of bound 
state wave function extension in the channel space from channel radius nr  to outer turning point ta  
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The transition amplitude nnTikr2 defined by 
2

1
1 n

n
nn n

T
E ER L

λ

λ

ω
−

= =
−−

 (5)

becomes for negative energy 2E E kλ λ λ= − = , k iλ λκ= ; 0λκ > , 2Eλ λκ= , 
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It is bound state formula in S-matrix theory as derived by Heisenberg (see Perelomov and Zeldovich, 1998, 
ch 3.3). The bound state pole, located on positive imaginary axis of complex momentum plane, has a residue 

2C called asymptotic normalization constant. This quantity does include both R-matrix residue 2
nλγ  as well as 

the normalization nλβ  of the wave function tail extending over channel radius. 
The bound state from a closed neutron channel embeded in a multichannel system is subject of 

equation 1−= nnnL R , where reduced R-matrix element nnR  is a complex quantity, 21 /)( nnn EiE λλλλ γ−Γ−Δ−=−R , 
with level shift λΔ  and decay width 0>Γλ  originating in coupling of neutron channel to complementay open 
ones. The Siegert condition implies now analytic continuation to a complex eigenvalue λλλλ Γ−Δ−= iEE . The 
bound state in closed neutron channel of a multichannel system becomes a complex energy state; it is the 
neutron subthreshold resonance. As λλ E<Δ  and 0<λE  it results the actual level energy 0<Δ− λλE  is still 
negative. The complex energy 2~

λλ k=E  is related to complex momentum λλλ κikk +=
~  ie 

022 <−=Δ−−=Δ− λλλλλλ κkEE  and 02 >−=Γ λλλ κk . These relations imply  0>λκ  and 0<λk , also λλ κ<k .   
Siegert boundary condition, )( λEnn LB = , results in 
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with same definitions as before for 2
nλω  and nλβ . In the limit λkk

~
→ one obtains for transition amplitude  
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The subthreshold resonance pole is not more located on positive imaginary axis (as for the stationary one) 
but rather is shifted to left of positive imaginary axis in second quadrant of complex momentum plane. 

The renormalization factor nλβ  becomes effective near threshold because there the logarithmic 
derivative is strongly varying. It provides a dip-like shape of spectroscopic factor 2

nλω  centered just at 
threshold. The multichannel coupling and threshold effects on spectroscopic factors of weakly bound states 
in exotic nuclei is a topic of interest in Gamow Shell Model (Michel, Nazarewicz, Ploszajczak and Vertse, 
2009). The above analytical approach is concerned only with the threshold energy dependence of 
spectroscopic factors; the multichannel effect on subthreshold pole is approached in next chapter. 

4. DYNAMICAL ASPECTS OF SUBTHRESHOLD RESONANCE 

A bound or a quasistationary state, originating in an eliminated channel, induces a resonance in  open 
competing channels. Both the width and level shift are determined by channels couplings  and by rescattering 
in open channels. A channel resonance pole, defined by equation 0)()(1 =− λλ EER nnn L  is subject of motion in 
complex energy plane, both by proximity threshold and by couplings to complementary reaction channels. A 
broad quasistationary state (from eliminated channel) results in a smaller width resonance which, in addition, 
is shifted to a lower energy (Hategan and Ionescu, 2014). This result can be analytically proved in terms of 
complex scattering length via its relation to channel reduced R-matrix element. 

1 0tann n n na a b a b δ= − Δ = + Γ . (10)

Phenomena developing in threshold channel near zero-energy (bound-unbound transition zone) could 
be properly described in terms of scattering length (eg Drukarev, 1978; Burke, 2011). The scattering length 

na , for neutron s-wave, is defined in terms of nδ  scattering phase shift  
2

0cot 1/ 1/ 2n nk a r kδ = − + , (11)

where k  and 0r  are channel wave number and effective radius; the scattering length   defines the scattering 
amplitude just at threshold energy. On the other hand the s-wave nuclear scattering phase-shift nδ  is related 
to R- matrix element nnR  and penetration factor nP  through relation nnnnnnn RkrRP ==δtan . In zero-energy 
limit the neutron scattering length and nnR  matrix element are related by nnnn Rra −=  with nr -channel radius. 
The relation can be extended to complex scattering phase-shift and reduced R- matrix element  too, 

nnnn P R=δ
~

tan . The complex scattering length nnnn riaaa R−=−= 21
~  components are related to those of reduced 

R-matrix element, nnnnnn iR Γ+Δ+=R , namely )(1 nnnn Rra Δ+−= , and nnra Γ=2 . (The imaginary component 
0>Γn  is consequence of subunitary value of collision matrix element 1<nnW . The Optical Model scattering 

length has also a negative imaginary component too, 2ia− , with 02 >a  due to absorptive component of 
optical potential.) The complex scattering length, 21

~ iaaan −=  is an alternative way to take into account 
channels couplings. The complex scattering length is dependent on coupling and rescattering in open 
channel. 

The complex scattering length, in case of only one open channel o, depends on corresponding open 
channel phase shift 0δ  as 

1 0 2 0tan tann n n n na a b a b a aδ δ= − Δ = + Γ = + . (12)
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Therefore naa >1  provided open channel scattering phase shift 0tan 0 >δ ; also nba Γ=2  decreases as effect of 
coupling and rescattering in open channel. 

1 2
2 2

1 2

.ia aik
a a a

−
= =

+
 (13)

Observe that  a bound state 01 >a  is located in 2-nd quadrant of k- plane and a virtual state 01 <a  in the third 
one ( 02 >a ). (The Optical Model pole is located at aik ~/= , either in second or third wave number quadrant.) 
In energy plane, Γ−= iEk 2 , the energy 0<E  is negative ( 2

1
2
2 aa < ), and the width Γ  is either positive 

(originating in a bound state) or negative (originating in a virtual state). As 1a increases and 2a  decreases one 
obtains that both 2

11 /~Im aak  and 2
12 /~Re aak  decrease so the pole is shifted to origin (or threshold). It is an 

analytical demonstration that channels couplings result into shift of the channel state pole to the real axis and 
into decrease of its decay width.  

In literature (Badalyan et al., 1982), one reports on “channel coupling pole” observed in numerical 
experiments for multichannel scattering; a single channel pole may be driven to physical region of the 
complex energy plane when channel coupling becomes effective. The “channel coupling resonances” and 
multichannel resonances originating in quasistationary or bound channel states have similar width property. 

This approach to channel (also to inner) resonances can be compared to K-matrix formalism for 
resonances too (Chung et al., 1995). There are two types of resonances which differ in dynamical character; 
they are parametrized, according to K-matrix, in two distinct forms. Resonances can arise from strongly 
varying K-matrix elements (pole). These “normal resonances” correspond to dynamical sources at the 
constituent level; in our case they correspond to “compound nucleus” resonances. Resonances can appear 
also from constant K-matrix element provided the energy variation is supplied by phase space. These 
“molecular resonances” are assumed to arise from couplings in the reaction channels; in our case the reduced 
R-matrix element nnR  does include couplings to complementary channels. The “channel resonance”, 
described by channel  equation 01 =− −

nnn LR , originates in constant reduced R-matrix element and in energy 
dependent logarithmic derivative. The energy variation of channel logarithmic derivative is implied in 
realization of the quasistationary state condition 1−= nnn LR . 

5. CONCLUSIONS 

The neutron subthreshold states are viewed in this paper as near-threshold Gamow-Siegert states. The 
Gamow-Siegert state is described by relating channel R-matrix element to channel logarithmic derivative, 

01 =− nnnLR . The extension to multichannel case implies replacement of nnR  matrix element by its reduced 
counterpart nnR . The corresponding term 1)1( −− nnnLR  describes n- channel physics in reduced collision 
matrix of multichannel system. The Gamow-Siegert condition, 01 =− nnnLR , implied in reduced collision 
matrix, describes the neutron subthreshold resonance including its main spectroscopical properties as 
threshold compression of the reduced width. A merit of this approach is rederivation of Heisenberg’s 
S-matrix formula for a bound state as well as its generalization to multichannel case. 

Dynamical aspects of subthreshold resonance are discussed in terms of (complex) neutron scattering 
length. A multichannel property of subthreshold resonance is revealed, ie the shift to the origin of the 
Gamow-Siegert pole. The Gamow-Siegert pole of subthreshold state is subject of shift to the origin; 
physically two mechanisms of compression are involved the R-matrix compresssion factor, effective only 
near threshold,  and direct interaction (channels couplings) compression factor due to channels couplings. 
The last mechanism could be put into correspondance with “molecular resonances” or with “channel 
coupling pole” observed in numerical experiments for multichannel scattering: a single channel pole may be 
driven to physical region of the complex energy plane if channel couplings become effective. 
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