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Abstract. By using the Pochhammer k-symbols, and the k-hypergeometric functions we build and 
examine some properties of the k-coherent states. Using the diagonal ordering operation technique we 
demonstrate that these new constructed states satisfy all requirements imposed to a coherent state as 
stated by Klauder.  

Key words: coherent states, k-hypergeometric functions, operator theory. 

1. INTRODUCTION 

After their introduction by Schrödinger [1], the concept of coherent states (CSs) was developed and 
examined for many physical quantum systems [2]. Generally, a coherent state (CS) is a ket vector labeled by 
a complex number )iexp(|| ϕzz = , with ∞≤|| z , πϕ 20 ≤≤ , whose expansion in the Fock – vectors basis 
is 
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where )(nρ is a positive sequence of real numbers – the structure constants, which determine the internal 
structure of CSs.   

The CSs exist only if the normalization function )|(| 2zN is an analytical function of real variable 
2|| z , and if satisfy a number of criteria summarized by Klauder: continuity in complex label, normalization, 

non orthogonality, unity operator resolution with unique positive weight function of the integration measure, 
temporal stability and action identity [3]. The most general class of CSs are the generalized hypergeometric 
coherent states (GH-CSs) whose normalization function is a generalized hypergeometric 
function { } { } )||;;( 2

11 zbaF q
j

p
iqp  [4, 5]:  

{ } { } 2 0 ,
1 1

1| | ,
( )( ; ; | | )

n

qp n p q
p q i ji j

zz n
nF a b z ρ

∞

=
= =

>= >∑  (1.2) 

where we used the following notation for the sequence of numbers { } { }p
p
ii aaaa ,...,, 211 ==  and so on. By 

particularizing these numbers, as well as the positive integers p  and q , we obtain the all known CSs. 
The main purpose of the present paper is to build the so called k-coherent states (k-CSs) defined by 

using the Pochhammer k-symbols, respectively, the generalized k-hypergeometric functions and to reveal 
some of their properties. We concentrate here only on the examination of the coherent states of Barut - 
Girardello kind (k-BG-CSs), defined as the eigenvectors of the lowering operator of the quantum system in 
consideration [6]. We point out here that the presented approach can be extended also on the mixed (thermal) 
states, characterized by density operator ρ. Moreover, the building of the k-CSs approach can highlight a 
series of new formulae related to generalized k-hypergeometric functions.  
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2. K-MATHEMATICAL GENERALIZATIONS 

Over the decades, as an alternative to “classical” algebraic entities were developed a series of 
generalizations thereof. Some of them have got the name k-generalizations and were denoted by the index k. 
As particular cases (for 1=k ), all these generalized entities lead to the corresponding classical entities. For 

C∈x , R∈k  and +∈Nn , the Pochhammer k- symbol, denoted by ( ) knx , , recently introduced by Díaz and 
Pariguan, is defined as [7] 
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where ( )xkΓ  is the k-gamma function. For 0)Re( >x  it is defined by the integral 
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In other words, the Pochhammer k-symbol is defined so that the rate of increase in the number x is a 
positive number k . We insert below only few usual properties [7]: 
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as well as the following connection with the usual Pochhammer symbol  )(/)()( anaa n Γ+Γ= : 
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The Pochhammer k-symbols and implicitly the k- gamma functions are used to define the generalized 
k-hypergeometric functions ( ){ } ( ){ }( )xkbkaF q
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where we used the notation ( ){ } ( ) ( ) ( ){ }
knpknkn

p
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,,2,11 ,...,,, ==  and so on. Particularly, in this paper, 

we will be interested in the following k-hypergeometric function 
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The s-order differentiation of k-hypergeometric function with respect to their argument is deduced 
from the similar formula fоr usual hypergeometric function [9] and using the above properties:    
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Next we will use the following differential operator [10] 
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where ( )jsS ,  are Stirling’s numbers of the second kind [11], and apply this formula to k-hypergeometric 
function 
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This relation will be useful for calculating some expectation values in the k -CSs representation.   

3. K-COHERENT STATES 

Let’s two Hermitic operators −A (lowering)  and +A  (raising), so as to satisfy the equations  

| | 1 ,nA n e n− >= − > 1| | 1 ,nA n e n+ +> = + > | | ,nA A n e n+ − >= >  (3.1) 

and a dimensionless Hamilton operator factorized as −+= AAH  , with the dimensionless eigenvalues ne .  
Particularly, let we choose the dimensionless eigenvalues in the manner that they depend linearly on 

the principal quantum number n , i.e. knben += , where 0>k ,   -Z\C kb∈ ,  and ...,2,1,0=n . This 
choice corresponds to some quantum systems, e.g. one dimensional harmonic oscillator, pseudoharmonic 
oscillator, Landau levels and so on. Consequently, 
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The n-fold repetition of applying the raising operator to the vacuum state >0|  leads to  
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Using the definition of the Pochhammer k-symbol, we can write an useful relation 
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As it is well-known, the Fock vectors satisfy the completeness relation ∑
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considering the Hermitic conjugate of Eq. (3.4) and substituting both equations in the above relation, we 
obtain 
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This relation becomes useful if we appeal to our previously introduced new operator ordering 
technique, i.e. to the diagonal ordering operation technique (DOOT), denoted by the symbol # # and whose 
fundamental rules are [12]: a) Inside the symbol # #, the order of the operators −A  and +A  can be permuted 
like commutable operators, so that finally we obtain an operator function that depends only on the entire 
powers of the product −+AA , i.e. ( ) ( ) ( ) ( ) ( ) ### #  # # nnnnn AAAAAA −+−++− == ; b) A symbol # #  inside 
another symbol # # can be deleted; c) If the integration is convergent, a normally ordered product of 
operators can be integrated or differentiated (generally, it can be applied any algebraic operations) with 
respect to the c-numbers, according to the usual algebraic rules. Consequently, the c-numbers can be taken 
out from the symbol # #; d) the vacuum state projector |00| ><  in the frame of DOOT generally has the 
following normal ordered form: 
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By applying the rules a) – c) on the Eq. (3.7), and using the properties of the Pochhammer 
k-symbols, we obtain that the vacuum operator connected with our pair of operators is 
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k
AAkkbkkF k ;),(;),(,11  is the Kummer confluent k-hypergeometric function [7]. This means 

that the DOOT rules can be applied not only to systems with infinite [12] or finite (e.g. spin systems [13]) 
energy spectra, but can be extended also on the k-generalized functions.                            

Now, let us we define the k-coherent states in the Barut-Girardello manner (k-BG-CSs) kz >| , i.e. as 
the eigenstates of the lowering operator −A  [6] 

| | .k kA z z z− > = >  (3.9) 

In what follows we will demonstrate that k-BG-CSs fulfill all Klauder’s requirements imposed to any 
CS [3]. First, the k-BG-CSs can be also expanded as a superposition of the energy eigenstates >n| , using 
Eqs. (3.4) and (3.9), as well as the normalization relation: 
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From the overlap (or scalar product) of two k-BG-CSs, i.e. 
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it can be seen that the k-BG-CSs are normalizable but non orthogonal.  
Using Eq. (3.4), the k-BG-CSs can be written as an operator acting on the vacuum state >0| : 
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The continuity in the complex label, i.e. if zz →' , then kk zz >→> |'| , can be demonstrated by 

calculating the following limit: ( ) 0|''|lim2|'|lim
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With the Hermitic conjugate of Eq. (3.12), as well as with Eq. (3.8) for the vacuum operator, we are 
able to write the k-BG-CSs projector: 
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We use this relation in order to demonstrate the resolution of the unity operator, i.e. 

d ( ) | | 1,k k kz z zμ > < =∫  (3.14) 

where it is necessary to determine the integration measure ( ) ( ) ( )1 2 2d ( ) 2 d d | | | | ,k kz z h zμ π ϕ−= ⋅ ⋅  

respectively their weight function ( )2|| zhk that must be a positive defined function.  
The main steps of the calculations are: 
– The function change 
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– The angular integration  
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– The resolution of the following Stieltjes moment problem [14]: 
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– The index change 1−= sn , and the solution is [15] 

( ) k
b

k
z

k k
ze

k
bkk

b
k
zG

k
bk

zh ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟
⎠
⎞

⎜
⎝
⎛ +Γ

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟
⎠
⎞

⎜
⎝
⎛ +Γ

=
− 2||2

0,1
1,0

2 ||

1

1||

1

1||~
2

 (3.18) 

so that, finally, the integration measure becomes 
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from which it can see that the weight function is positive definite.   
Temporal stability relative to the time evolution operator ( )tHt iexp)( −=U  can be expressed as 
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which shows that, during the time, the k-BG-CSs remain coherent. 
To show the action identity (or, the lower symbol of Hamiltonian H ), we use the following recurrence 

relation of the Pochhammer k-symbols 
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change the summation index 1' −= nn , eliminate the unphysical term with 1' −=n , and we obtain: 
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So, the above defined  k-BG-CSs kz >|  are certainly coherent states.  
Above we have used also the Hermitical conjugate relation of the definition of k-BG-CSs:  
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Generally, the expectation or mean value of an operator A  in the k-BG-CSs representation is 
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On the other hand, the expectation value of the normally ordered operator’s product −+ AA  is 
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which means that 2|| z is the eigenvalue of the normally ordered operators −+ AA , associated with the 

eigenvector kz >| . This result can be generalized using the DOOT rules, i.e. the property a): 
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The practical importance of this result is the following: whenever we have to calculate the expectation 
value in the k-BG-CSs representation of a function depending on the normally ordered operator product 

−+AA , due to the DOOT rules, it is sufficient to simply replace the product −+AA  with their eigenvalue in k-

BG-CSs representation, i.e. with 
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 From the equality ( ) ( ) >+>=+>=−+ nNkbnknbnAA |||  where N is the number operator  (the 
main number of particles) , i.e. >=> nnnN || , we obtain the following operator identity for the integer 
power s  of the number operator N  
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 Consequently, their expectation value in the k-BG-CSs representation is 
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Moreover, the Mandel parameter kz
Q

,|| 2 is a measure of the departure of the occupation number 

distribution statistics from Poissonian statistics [12]. For  k-BG-CSs it is 
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 Because the Mandel parameter is always negative, 0;|| 2 <kzQ , the behavior of the k-BG-CSs is sub 

Poissonian. This assertion is confirmed also by calculating the probability that n  photons (generally, n  
particles) will be found in the k-BG-CS kz >|  , i.e.   

2
2

2
,

1 1,

1 (| | )( ) | | | .
( )| |( , ); ( , );

n

k k
n k

k

zn n z
b kzF k k b k k

k

=< > =
+⎛ ⎞

+⎜ ⎟
⎝ ⎠

P  
(3.31) 

At the harmonic limit this probability distribution tends to the Poisson distribution: 
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4. CONCLUDING REMARKS 

Starting from the new definition of Pochhammer k-symbols, introduced by Díaz and Pariguan [7], and, 
as a consequence, of some generalized k-hypergeometric functions, in this paper we built new kind of 
coherent states, the k-coherent states (k-CSs). In the paper we bordered only on the coherent states of the 
Barut-Girardello kind (k-BG-CSs), although the method can also be applied to build other types of coherent 
states (Klauder-Perelomov or Gazeau-Klauder). We demonstrated that the k-BG-CSs satisfy all the 
requirements imposed to a coherent state, stated by Klauder [3]: continuity in complex label, normalization, 
non orthogonality, unity operator resolution with unique positive weight function of the integration measure, 
temporal stability and action identity. For this purpose we used the rules of a previously introduced approach – 
the diagonal ordering operation technique (DOOT) [12] that greatly simplify the calculations. The presented 
approach proves that the coherent states can be built also in the frame of k-generalized functions, which give 
them a greater degree of generality. The value of Mandel parameter 0;|| 2 <kzQ , for pure states kz >| , show 

that it is associated with  sub Poissonian statistics. Also, we can point out that the above exposed approach 
connected with k-BG-CSs, using the DOOT, can be easy extended also on the mixed (thermal) states, as well 
as on the GH-CSs, so we can obtain the generalized k-hypergeometric coherent states (k-GHC-Ss), whose 
expansion in terms of Fock-vector basis is 
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and the corresponding structure constants are 
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Generally, all obtained formulae and expressions, generically denoted by kF  for the k-BG-CSs, at the 
limit 1→k  tend to the corresponding  formulae and expressions 1F  for the usual generalized 
hypergeometric coherent states GH-CSs, while for the harmonic limit 1→k  and 0→b  we recover 
formulae and expressions 0F  for the case of canonical CSs, characteristic for one-dimensional harmonic 
oscillator: 

11
lim ,kk→

=F F 01
0

lim .kk
b
→
→

=F F  
(4.3) 

 Moreover, one of the consequences of the k-BG-CSs approach is the deduction of some new 
formulae involving the k-functions, namely, the Pochhammer k-symbols, as well as the k-hypergeometric 
functions.  We insert here only one example: 
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