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Abstract. We obtain exact optical soliton solutions to perturbed nonlinear Schrödinger’s equation with 
quadratic-cubic nonlinearity by the aid of semi-inverse variational principle. The perturbation terms 
include inter-modal dispersion, higher-order dispersions, nonlinear dispersion and self-steepening term, the 
last two being with full nonlinearity.  
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1. INTRODUCTION 

Optical solitons is a treasure trove in the area of fiber optic communications technology [1–23]. Several 
results in this field are visible across a wide variety of journals. The governing model that describes the 
propagation of optical solitons and optical soliton complexes (soliton “molecules”) is the nonlinear 
Schrödinger’s equation (NLSE) that comes with various forms of nonlinearity. A new form of nonlinearity 
was proposed during 2011, which is called quadratic-cubic (QC) [5]. Thus far, NLSE with QC nonlinearity 
has been studied, without prerturbation terms, by the aid of some integration algorithms, including the 
application of semi-inverse variational principle (SVP) [3, 11]. The parameter dynamics was also retrieved 
with variational principle [5]. This paper will address the perturbed NLSE with QC form of nonlinearity by 
the application of SVP. This will reveal bright soliton solutions. The perturbation terms that will be studied 
are the inter-modal dispersion, third- and fourth-order dispersions (3OD and 4OD) as well as self-steepening 
term along with nonlinear dispersion. The last two perturbation terms are treated with full nonlinearity.  

It must be noted that a similar model has been studied in the past. The results for NLSE with QC 
nonlinearity, by the aid of SVP, without any perturbation terms have been reported during 2017 [3]. 
However, in presence of these perturbation terms, the results for NLSE with parabolic and dual-power laws 
of nonlinearity have been reported using SVP during 2014 [2]. The novelty of this paper lies in the fact that 
NLSE is studied with QC nonlinearity, in presence of perturbation terms, using SVP. Thus, this work is a 
generalization and extension of the previously established results [2, 3]. 

2. GOVERNING MODEL 

The governing resonant NLSE with perturbation terms that is studied in nonlinear optics is given in its 
dimensionless form as [2, 3, 15]:  

( ) ( ) ( )2 2 2
1 2i i i .m m

t xx x xxx xxxx
x x

q aq b q b q q q q q q q q qα γ σ λ θ⎡ ⎤+ + + = − − + +⎢ ⎥⎣ ⎦
 (1) 
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In Eq. (1), the independent variables x  and t  represent spatial and temporal variables, respectively. 
The dependent variable ( , )q x t  gives the complex-valued wave profile and i 1= − . The coefficient of the 
real-valued constant a  is group velocity dispersion (GVD). The nonlinear terms are given by the coefficients 
of 1b  and 2b , which represent quadratic and cubic nonlinearities, respectively. On the right hand side α is 
the coefficient of inter-modal dispersion. It occurs when the group velocity of light propagating in 
multimode optical fibers (or other optical waveguides) depends on the optical frequency and the propagation 
mode involved. The coefficients of γ and σ  are 3OD and 4OD, respectively. These appear when GVD is 
low and thus the higher-order dispersions compensate for it to maintain the necessary balance between 
dispersion and nonlinearity for the formation of optical solitons. The coefficient of λ  is due to self-
steepening that is included to avoid the formation of shock waves. Finally, θ  is the nonlinear dispersion. The 
index 0m >   is the full nonlinearity parameter. 

3. SEMI-INVERSE VARIATIONAL PRINCIPLE 

To solve Eq. (1) by SVP, the starting assumption is [2, 3]:  
iφ( , )( , ) ( )e x tq x t g s=  (2) 

where  
 s x vt= −  (3) 

and the phase  φ   is:  

0( , ) .x t x tφ κ ω θ= − + +  (4) 
In Eqs. (2) and (3), ( , )g x t  represents the amplitude component of the wave and v  is the speed of the 

wave. In Eq. (4), κ  represents the soliton frequency, ω  is the wave number, and 0θ  is the phase constant.  
Substituting (2) into (1) and equating real and imaginary parts leads to [2, 15]  

( )( ) 2 2 1
2 1 1 2 0iv mg P g P g b g b g g gσ λκ′′ +− + − + + =  (5) 

and  
 ( ) ( ) { }2 3 22 3 4 4 (2 1) 2 0.mv a g g m m g gκ α γ κ σ κ γ σ κ λ θ′ ′′ ′+ + + + − + + + + =  (6) 

Here the notations d / dg g s′ =  and  2 2d / dg g s′′ =  etc. are adopted. Here, in Eq. (5)  
2 3 4

1 ,P aω κ ακ γ κ σ κ= + + + +  (7) 
 

3
2 3 6 .P a γ κ σ κ= + +  (8) 

From Eq. (6), setting the coefficients of linearly independent functions to zero gives:  
2 32 3 4 ,v aκ α γ κ σ κ= − − − −  (9) 

 
4 0,γ σ κ+ =  (10) 

and  
 (2 1) 2 0.m mλ θ+ + =  (11) 

Thus, equation (9) gives the speed of the soliton in presence of the perturbation terms while relations (10) 
and (11) are the constraints on the perturbation parameters. 

Next, multiplying both sides of (5) by g ′  and integrating yields  

( ) ( )
3 4 2 22 22 1 2

1 22 2 ,
3 4 1

mb g b g gg g g P g P g K
m
λσ σ

+
′′ ′ ′′′ ′ ⎛ ⎞

− + − − + + =⎜ ⎟ +⎝ ⎠
 (12) 

where K  is the integration constant. The stationary integral is then defined as [2–4, 6, 10, 11]:  

( ) ( )
3 4 2 22 22 1 2

1 2
2d 3 d .

3 2 1

mb g b g gJ K s g P g P g s
m

λκσ
+∞ ∞ ′′ ′

−∞ −∞

⎡ ⎤
= = + − − − +⎢ ⎥+⎣ ⎦
∫ ∫  (13) 
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Now choose [3, 5, 15]  

( ) ,
cosh ( )

Ag s
D B s

=
+

 (14) 

where A  is the soliton amplitude, B  is its width and D  is an external parameter. SVP states that the 
solution of the perturbed equation (1) will have the same structure as its homogeneous counterpart. But, its 
amplitude and width will vary according to the coupled system of equations [1–4, 6, 10, 11]:  

0,J
A
∂

=
∂

 (15) 

and  

0.J
B
∂

=
∂

 (16) 

Substituting (14) into (13) and performing the integrations gives  

2 2 3 4 2
2 3 1 6 2 7 1 8 2 3 9

2

1(2 )
4 2 (2 1) 2 ,

13 15 45 35 2 ( 1)(4 1)(4 3) 2
2

m

m

m
P A M P A B M b A M b A M A M m mJ N A B

B B B B m m m m

λκσ

⎛ ⎞Γ Γ⎜ ⎟+ ⎝ ⎠= + − − − +
+ + + ⎛ ⎞Γ +⎜ ⎟

⎝ ⎠

(17) 

where  
1 2 3 4 512 7 6 12 8

35
M M M M MN + + − −

=  (18) 

and the rest of ( )1 9jM j≤ ≤  are given in Table 1 

Table 1 

Definition of ( )1 9jM j≤ ≤   

1M  9 16, 2; ;
2 2

DF −⎛ ⎞
⎜ ⎟
⎝ ⎠

 

2M  7 14, 2; ;
2 2

DF −⎛ ⎞
⎜ ⎟
⎝ ⎠

 

3M  9 14, 4; ;
2 2

DF −⎛ ⎞
⎜ ⎟
⎝ ⎠

 

4M  9 15, 2; ;
2 2

DF −⎛ ⎞
⎜ ⎟
⎝ ⎠

 

5M  11 15, 3; ;
2 2

DF −⎛ ⎞
⎜ ⎟
⎝ ⎠

 

6M  5 12, 2; ;
2 2

DF −⎛ ⎞
⎜ ⎟
⎝ ⎠

 

7M  7 14, 2; ;
2 2

DF −⎛ ⎞
⎜ ⎟
⎝ ⎠

 

8M  7 13, 3; ;
2 2

DF −⎛ ⎞
⎜ ⎟
⎝ ⎠

 

9M  5 12 2,2 2; 2 ;
2 2

DF m m m −⎛ ⎞+ + +⎜ ⎟
⎝ ⎠

 

Here, the Gauss’ hypergeometric function is defined as  
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( ) 1 2
1 2 3

0 3

( ) ( ), ; ; ,
( ) !

n
n n

n n

c c zF c c c z
c n

∞

=

=∑  (19) 

with the Pochhammer symbol given by  

 ( ) 1 0, 
 ( 1) ( 1) 0.n

n
p

p p p n n
=⎧

= ⎨ + + − >⎩
 (20) 

The convergence criterium for hypergeometric function is  
| | 1.z <  (21) 

which, from the table amounts to saying  
1 3.D− < <  (22) 

Furthermore, Rabbe's criteria of convergence implies  
3 1 2c c c< +  (23) 

and this is satisfied for all of the hypergeometric functions listed in the table.  
Next, for J  given by (17), equations (15) and (16) reduce to  

2 2 2
4 1 6 2 7 1 8 2 3 9

2

1(2 )
2 2 2 (2 1) 2 0,

13 15 15 35 2 (4 1)(4 3) 2
2

m

m

m
P M P B M b AM b A M A M m mN B

m m m
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+ + ⎛ ⎞Γ +⎜ ⎟
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 (24) 

and  

 
2 2 2

4 1 6 2 7 1 8 2 3 9
2

1(2 )
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2

m

m
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P M P B M b AM b A M A M m mN B

m m m m

λκσ

⎛ ⎞Γ Γ⎜ ⎟+ ⎝ ⎠− − + + − =
+ + + ⎛ ⎞Γ +⎜ ⎟

⎝ ⎠

(25) 

where, (x)Γ  is Euler’s gamma function. Upon uncoupling, (24) and (25) lead to a biquadratic equation for 
the width B  in terms of the soliton amplitude A , which is given by  

2 2 2 2
4 2 7 1 8 2 3 9

2

1(2 )
2 2 2 (2 1) 24 0,

115 45 35 2 (4 1)(4 3) 2
2

m

m

m
P B M b AM b A M A M m mN B

m m m

λκσ

⎛ ⎞Γ Γ⎜ ⎟+ ⎝ ⎠− − − + =
+ + ⎛ ⎞Γ +⎜ ⎟

⎝ ⎠

 (26) 

Equation (26) solves to  
1
2

2 2 2 2 2
2 7 2 7 1 8 2 3 9

2

1(2 )
2 4 2 2 (2 1)1 216 .
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2

m

m
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σ
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⎣ ⎦  

(27) 

 
This relation between the soliton amplitude and width will exist provided  

1
2

2 2 2 2 2
2 7 2 7 1 8 2 3 9

2

1(2 )
2 4 2 2 (2 1) 216 0,

115 225 45 35 2 (4 1)(4 3) 2
2

m

m

m
P M P M b AM b A M A M m mN N

m m m

λκσ σ

⎡ ⎤
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 (28) 

and 
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2 7 2
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2 2 (2 1) 2900 0.

145 35 2 (4 1)(4 3) 2
2

m

m

m
b AM b A M A M m mP M N

m m m

λκσ

⎧ ⎫⎛ ⎞Γ Γ⎜ ⎟⎪ ⎪+⎪ ⎪⎝ ⎠+ + − >⎨ ⎬+ + ⎛ ⎞⎪ ⎪Γ +⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 (29) 



5 Optical soliton perturbation with quadratic-cubic nonlinearity by semi-inverse variational principle  335

Thus, finally 1-soliton solution to the perturbed NLSE (1), with QC nonlinearity and fully nonlinear 
perturbation terms, is 

( )0i( , ) e
cosh[ ( ]

,
)

x tAq x t
D B x vt

κ ω θ− + +=
+ −

 (30) 

where the amplitude-width relation as well as the soliton speed are all indicated above along with the 
parameter restrictions for the existence of bright soliton. 

Figure 1 shows the profile of bright 1-soliton solution to the model. The parameter values chosen in this 
case are: 1 21/ 2, 1, 1/ 2, 1, 1, 2a b b Dα γ σ λ θ= = = = = = − = = = , and 1m = . 

 

Fig. 1 

4. CONCLUSION 

 This paper retrieved bright optical soliton solutions to the perturbed NLSE that is studied with QC 
nonlinearity. A numerical simulation of the bright single-soliton solution is also displayed. The results are in 
terms of Gauss’ hypergeometric functions. The perturbed NLSE is otherwise not integrable with the aid of 
any other known methods that have been developed thus far in the literature. Although explicit expressions 
for the soliton amplitude and width are not available for this model with SVP, it is the amplitude-width 
relation one has to stay contended with. The results of this paper carry a lot of scope in future. This 
integration scheme can be applied to other situations such as optical metamaterials, optical switching, and 
DWDM systems. These applications will be studied and their results will be available down the road. 

REFERENCES 

1. A.H. BHRAWY, A.A. ALSHAERY, E.M. HILAL, D. MILOVIC, L. MORARU, M. SAVESCU, A. BISWAS, Optical solitons 
with polynomial and triple power law nonlinearities and spatio-temporal dispersion, Proceedings of the Romanian Academy, 
Series A, 15, pp. 235–240, 2014.  

2. A.H. BHRAWY, A.A. ALSHAERY, E.M. HILAL, K.R. KHAN, M.F. MAHMOOD, A. BISWAS, Optical soliton perturbation 
with spatio-temporal dispersion in parabolic and dual-power law media by semi-inverse variational principle, Optik, 125, 
pp. 4945–4950, 2014.  



 Mir ASMA, W.A.M. OTHMAN, B.R. WONG, Anjan BISWAS 6 336 

3. A. BISWAS, M.Z. ULLAH, M.ASMA, Q. ZHOU, S.P. MOSHOKOA, M. BELIC, Optical solitons with quadratic-cubic 
nonlinearity by semi-inverse variational principle, Optik, 139, pp. 16–19, 2017.  

4. A. BISWAS, D. MILOVIC, M. SAVESCU, M.F. MAHMOOD, K.R. KHAN, R. KOHL, Optical soliton perturbation in 
nanofibers with improved nonlinear Schrödinger’s equation by semi-inverse variational principle, Journal of Nonlinear 
Optical Physics and Materials, 21, 1250054, 2012.  

5. J. FUJIOKA, E. CORTÉS, R. PÉREZ-PASCUAL, R.F. RODRIGUEZ, A. ESPINOSA, B.A. MALOMED, Chaotic solitons in 
the quadratic-cubic nonlinear Schrödinger equation under nonlinearity management, Chaos, 21, 033120, 2011.  

6. J. VEGA-GUZMAN, E.M. HILAL, A.A. ALSHAERY, A.H. BHRAWY, M.F. MAHMOOD, L. MORARU, A. BISWAS, 
Thirring optical solitons with spatio-temporal dispersion, Proceedings of the Romanian Academy, Series A, 16, pp. 41–46, 
2015.  

7. R. KOHL, D. MILOVIC, E. ZERRAD, A. BISWAS, Optical solitons by He's variational principle in a non-Kerr law media, 
Journal of Infrared, Millimeter and Terahertz Waves, 30, pp. 526–537, 2009.  

8. S. KUMAR, Q. ZHOU, A. H. BHRAWY, E. ZERRAD, A. BISWAS, M. BELIC, Optical solitons in birefringent fibers by Lie 
symmetry analysis, Romanian Reports in Physics, 68, pp. 341–352, 2016.  

9. X-W. LI, Y. LI, J-H. HE, On the semi-inverse method and variational principle, Thermal Science, 17, pp. 1565–1568, 2013. 
10. D. MIHALACHE, Multidimensional localized structures in optical and matter-wave media: A topical survey of recent 

literature, Romanian Reports in Physics, 69, 403, 2017.  
11. M. NAJAFI, S. ARBABI, Dark soliton and periodic wave solutions of the Biswas - Milovic equation, Optik, 127, pp. 2679–2682, 

2016.  
12. T. OZIS, A. YILDIRIM, Application of He’s semi-inverse method to the nonlinear Schrödinger equation, Computers and 

Mathematics with Applications, 54, pp. 1039–1042, 2007.  
13. M. SAVESCU, A.H. BHRAWY, E.M. HILAL, A.A. ALSHAERY, A. BISWAS, Optical solitons in birefringent fibers with 

four-wave mixing for Kerr law nonlinearity, Romanian Journal of Physics, 59, pp. 582–589, 2014. 
14. S. SHWETANSHUMALA, Temporal solitons of modified complex Ginzburg-Landau Equation, Progress in Electromagnetic 

Research Letters, 3, pp. 17–24, 2008. 
15. H. TRIKI, A. BISWAS, S.P. MOSHOKOA, M. BELIC, Optical solitons and conservation laws with quadratic-cubic 

nonlinearity, Optik, 128, pp. 63–70, 2017. 
16. Y. WU, Variational approach to the generalized Zakharov equation, International Journal of Nonlinear Sciences and Numerical 

Simulations, 10, pp. 1245–1247, 2009.  
17. Y. XU, J. VEGA-GUZMAN, D. MILOVIC, M. MIRZAZADEH, M. ESLAMI, M.F. MAHMOOD, A. BISWAS, M. BELIC, 

Bright and exotic solitons in optical metamaterials by semi–inverse variational principle, Journal of Nonlinear Optical 
Physics and Materials, 24, 155042, 2015.  

18. A. ZERARKA, K. LIBARIR, A semi-inverse variational method for generating the bound state energy eigenvalues in a 
quantum system: The Schrödinger equation, Communications in Nonlinear Science and Numerical Simulation, 14, pp. 3195–3199, 
2009. 

19. C.B. ZHENG, B. LIU, Z-J. WANG, S-K. ZHENG, Generalized variational principle for electromagnetic field with magnetic 
monopoles by He’s semi-inverse method, International Journal of Nonlinear Science and Numerical Simulation, 10, pp. 1369–1372, 
2009. 

20. Q. ZHOU, Q. ZHU, M. SAVESCU, A. BHRAWY, A. BISWAS, Optical solitons with nonlinear dispersion in parabolic law 
medium, Proceedings of the Romanian Academy, Series A, 16, pp. 152–159, 2015. 

21. S. CHEN, P. GRELU, D. MIHALACHE, F. BARONIO, Families of rational soliton solutions of Kadomtsev-Petviashvili I 
equation, Romanian Reports in Physics, 68, pp. 1407–1424, 2016. 

22. Y.B. LIU, A.S. FOKAS, D. MIHALACHE, J.S. HE, Parallel line rogue waves of the third-type Davey-Stewartson equation, 
Romanian Reports in Physics, 68, pp. 1425–1446, 2016. 

23. J. S. HE et al., Handling shocks and rogue waves in optical fibers, Romanian Journal of Physics, 62, p. 203, 2017. 
 

 
Received May 8, 2017 


