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Abstract. In this work we develop the negative-order Calogero-Bogoyavlenskii-Schiff (CBS) 
equation and the negative-order modified CBS equation. By means of the recursion operators of the 
Korteweg-de Vries (KdV) equation and the modified KdV equation, we derive negative-order forms 
for the two CBS equations. We formally derive multiple soliton solutions for the newly developed 
equations. We compare the results of the standard CBS equation and the modified CBS equation with 
the results for the negative-order versions of these equations. 
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1. INTRODUCTION 

The recursion operator plays a significant role in the field of integrable equations in (1+1) dimensions. 
A recursion operator is defined as an integro-differential operator that maps a generalized symmetry of a 
nonlinear partial differential equation to a new symmetry [1–10]. The recursion operator, as developed by 
Olver [4] and others, for any nonlinear evolution equation indicates that this equation has infinitely many 
higher-order symmetries, which is a key feature of its complete integrability. Olver [4] reported that the 
recursion operator maps a symmetry to a new symmetry. However, Magri [6] revealed that some systems 
admitted two distinct but compatible Hamiltonian structures, now known as bi-Hamiltonian system. 

The hereditary symmetry )),(( txuΦ  is a recursion operator of the following hierarchy of evolution 
equations  

0.=)( xt uuu Φ+  (1)

It is obvious that this equation gives rise to a variety of (1+1)-dimensional equations depending on the 
structure of )(uΦ . The recursion operator )(vΦ  for the KdV equation is given as  

,24=)( 12 −∂++∂Φ xxx vvv  (2)

where x∂  and 1−∂ x  denote the total derivative and its integration operator with respect to x , respectively. 
Using the recursion operator (2) gives the celebrated KdV equation as [11–25]  

0,=6 xxxxt vvvv ++  (3)

which includes the nonlinear term xvv  and the dispersion term xxxv . 
However, the recursion operator for the modified KdV (mKdV) equation takes the form  

),(44=)( 122
1 vvvv xxx ⋅∂++∂Φ −  (4)

which gives the mKdV equation  

0.=6 2
xxxxt vvvv ++  (5)
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The last term in (4) is the operator that takes a polynomial { }vRP∈ , multiplies it by v , then applies the 
1−D , and finally multiplies the result by xv4  [4]. The concept of the recursion operator (4) was thoroughly 

used in the literature, in particular in [1–10] to develop new equations in higher dimensions. 
However, the Calogero-Bogoyavlenskii-Schiff (CBS) equation was first constructed by Bogoyavlenskii 

where the modified Lax formalism was used. It was also derived by Schiff by reducing the self-dual Yang–
Mills equation [1–9]. 

We use the following hierarchy of evolution equations  

0,=)( yt vvv Φ+  (6)

where Φ  is the recursion operator of the KdV equation (2), and xv  in (1) is replaced by yv . This in turn 
gives the CBS equation  

0,=24 1
yxxyxxyt vvvvvv −∂+++  (7)

or equivalently  

0,=24 yxxxyxxxxyxt uuuuuu +++  (8)

obtained by using the potential xuv = . 
On the other hand, we use the following hierarchy of evolution equations  

0,=)(1 yt vvv Φ+  (9)

where 1Φ  is the recursion operator of the modified KdV equation (4), and xv  in (1) is replaced by yv . This 
in turn gives the modified Calogero-Bogoyavlenskii-Schiff  equation  

0.=)(44 12
yxxyxxyt vvvvvvv ⋅∂+++ −  (10) 

Olver [4] proved a general theorem about recursion operators for symmetries of an evolution equation, 
where it was shown that such an operator creates a new symmetry generator when applied to a known 
symmetry generator. However, Verosky [8] extended the work of Olver in the negative direction to obtain a 
sequence of equations of increasingly negative orders. Recall that (1) indicates  

).(= xt vv Φ−  (11) 

By the negative order hierarchy, we refer to  

,= 1
xt vv −Φ−  (12) 

i.e. the powers of φ  go to the opposite direction [7–9]. In other words, the negative order equation can be 
denoted by  

,=)( xt vv −Φ  (13) 

and similarly for the modified version we use  

1( ) = .t xv vΦ −  (14) 

The determination of exact solutions, especially for integrable equations, offers a rich knowledge of the 
physical behavior and dynamical phenomena of the examined nonlinear equations. Examples of the methods 
used are the Painlevé analysis [1–9], the inverse scattering method, Lax pairs, and many others. 

The goals of this work are two fold. In part I, we aim to establish negative-order equation for the CBS 
equation (8), and to compare the soliton solutions of the standard CBS equation with its negative-order form. 
In part II, we develop a negative-order form for the modified CBS equation, which will be derived as well. 
We will compare the results of the modified CBS equation with the results of the negative-order form of it. 
We plan to derive multiple soliton solutions for the newly developed equations and to compare the obtained 
results with the results of the standard CBS and the modified CBS equations. 
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2. PART I 

In this part, we will briefly review the obtained results for the CBS equation We then will move to 
derive the negative-order CBS equation. We will compare the soliton results of each equation. 

2.1. The standard CBS equation  

As stated earlier, we will summarize the results we obtained before in [3] when we examined the CBS 
equation  

0.=24 yxxxyxxxxyxt uuuuuu +++  (15) 

In what follows, we only list the obtained results in [3].The single soliton solutions was found to be  

,
1

2=),,(
1

2
111

1
2
111

1

trkyrxk

trkyrxk

e

ektyxu
−+

−+

+
 (16) 

where the dispersion relation was derived as 1
2

11 = rkc , and the solution ),,( tyxu  was assumed as 
( )xtyxftyxu ),,(ln2=),,( , and the auxiliary function was set as  

,1=),,( 1θetyxf +  (17) 

where the dispersion variable iθ  is given by  

2= , = 1,2,3.i i i i ik x r y k rt iθ + −  (18) 

In a like manner, we can obtain the two soliton solutions by using the auxiliary function as  

.1=),,( 21
12

21 θθθθ ++++ eaeetyxf  (19) 

where the phase shift 12a  was found as  

.
)(
)(= 2

21

2
21

12 kk
kka

+
−

 (20) 

The three soliton solutions can be obtained by using the auxiliary function as  

.1=),,( 321
231312

32
23

31
13

21
12

321 θθθθθθθθθθθθ +++++ +++++++ eaaaeaeaeaeeetyxf  (21) 

For more information about these results, please look at Ref. [3] and some of the references therein. 

2.2. The negative-order CBS equation  

In this section we aim to develop the negative-order CBS equation. We first use the negative order 
hierarchy  

,=)( yt vv −Φ  (22) 

where the recursion operator Φ  for the CBS equation is the same recursion operator for the KdV equation 
given in (2). In other words, we use  

( ) ,=)(24 12
ytxxx vvvv −∂++∂ −  (23) 

which gives  

,=)(24 1
ytxxtxxt vvvvvv −∂++ −  (24) 

or equivalently  
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0,=24 xytxxxtxxxxt uuuuuu +++  (25) 

obtained upon using the potential xuv = . Next we will study the multiple soliton solutions for the negative-
order CBS equation (25). 

2.2.1. Multiple soliton solutions  

To determine the dispersion relation, we set  

( ) ,),,(ln=),,( xtyxfRtyxu  (26) 

where the auxiliary function ),,( tyxf  is given as  

( , , ) = , = 1,2,3,k x r y c ti i if x y t e i+ −  (27) 

for the single soliton solution. Substituting (26) into the negative-order CBS equation (25) gives the 
dispersion relation by  

1,2,3,=,= 2 i
k
rc
i

i
i  (28) 

and  

2.=R  (29) 

and therefore we set the phase variable as  

2( , , ) = , = 1,2,3.i
i i i

i

rx y t k x r y t i
k

θ + −  (30) 

Using (26) gives the single soliton solution  

,

1

2=),,(
2
1

1
11

2
1

1
11

1

t
k

r
yrxk

t
k

r
yrxk

e

ektyxu
−+

−+

+

 (31) 

where the solution of the negative-order CBS equation (23) is obtained by using the potential 
),,(=),,( tyxutyxv x . 

For the two soliton solutions we set the auxiliary function as  

,1=),,( ),,(2),,(1
12

),,(2),,(1 tyxtyxtyxtyx eaeetyxf θθθθ ++++  (32) 

where 12a  is the phase shift and ( , ), = 1,2,3i x t iθ  is given in (30). Substituting (32) and (26) into the 
negative-order CBS equation (25) we obtain the phase shift by  

,
)(
)(= 2

21

2
21

12 kk
kka

+
−

 (33) 

and hence we set the phase shifts by  
2

2

( )
= , 1 < 3.

( )
i j

ij
i j

k k
a i j

k k
−

≤ ≤
+

 (34) 

Notice that the negative-order CBS equation does not show resonance because 012 ≠a  or ∞  for |||| 21 kk ≠ . 
Combining (32) and (33) and substituting the outcome into (26), we obtain the two soliton solutions. 

For the three soliton solutions, we set  

.1=),,( 321
123

31
13

32
23

21
12

321 θθθθθθθθθθθθ +++++ +++++++ ebeaeaeaeeetyxf  (35) 

Proceeding as before, we find  
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.= 132312123 aaab  (36) 

This shows that the three soliton solutions are obtainable. The existence of three soliton solutions often 
indicates the complete integrability of the equation under examination. However, other criteria, such as Lax 
pair should be used to confirm integrability.  

We conclude from the results obtained above that the CBS equation and the negative-oder CBS 
equation have distinct solitons. This is due to the distinct dispersion relations. The dispersion relations for the 
CBS equation and the negative-order CBS equation were derived as 2 , = 1,2,3i ir k i  and 2/ , = 1,2,3i ir k i , 
respectively. However, the two equations give multiple soliton solutions where the phase shifts of the 
interaction of solitons are identical and both do not show resonance. 

3. PART II  

In a parallel manner to the analysis presented in part I, we plan to conduct a comparative study of the 
modified CBS equation and the negative-order modified CBS equation, which we will derive later. 

3.1. The modified CBS equation  

The modified CBS equation was already derived in (10) and is given as  

0.=)(44 12
yxxyxxyt vvvvvvv ⋅∂+++ −  (37) 

We first use  

,
4

4
=)(=),,(

2
1

1 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ++
−⋅∂−

x

yxxyt
y v

vvvv
vvtyxψ  (38) 

which carries (37) to  

0.=),,(44 1
2 tyxvvvvv xyxxyt ψ+++  (39) 

Differentiating (39) with respect to x  and using (38) we obtain  

0.=4124 1
2 ψxxyxxyxxxyxt vvvvvvvv ++++  (40) 

3.2. Multiple kink solutions  

To determine the dispersion relation, we set  

( ) ,),,(arctan=),,( xtyxfRtyxv  (41) 

where the auxiliary function ),,( tyxf  is given as  

( , , ) = , = 1,2,3,k x r y c ti i if x y t e i+ −  (42) 

for the single soliton solution. Substituting (41) into the modified CBS equation (40) gives the dispersion 
relations by  

2= , = 1,2,3,i i ic rk i  (43) 

and  

2.=R  (44) 

and therefore we set the phase variable as  
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2( , , ) = , = 1,2,3.i i i i ix y t k x r y rk t iθ + −  (45) 

Using (41) gives the single kink solution  

.
1

2=),,(
)2

11112(

2
1111

1

tkryrxk

tkryrxk

e

ektyxv
−+

−+

+
 (46) 

For the two soliton solutions we set the auxiliary functions as  
( ) 1 2

1 2
12

, , ,

( , , ) 1 ,

f x y t e e

g x y t a e

θ θ

θ θ+

= +

= −
 (47) 

where 12a  is the phase shift and ( , ), = 1,2,3i x t iθ  is given in (45). Substituting (47) and (41) into the 
modified CBS equation (40) we obtain the phase shift by  

,
)(
)(= 2

21

2
21

12 kk
kka

+
−

 (48) 

and hence we set the phase shifts by  
2

2

( )
= , 1 < 3.

( )
i j

ij
i j

k k
a i j

k k
−

≤ ≤
+

 (49) 

Notice that the modified CBS equation does not show resonance because 012 ≠a  or ∞  for |||| 21 kk ≠ . 
Combining (47) and (48) and substituting the outcome into (40), we obtain the two soliton solutions. 

For the three soliton solutions, we set  

( )

( )

3
1 2 3

123
=1

1 3 2 31 2
12 13 23

, , ,

, , 1 .

i

i
f x y t e b e

g x y t a e a e a e

θ θ θ θ

θ θ θ θθ θ

+ +

+ ++

= −

= − − −

∑
 (50) 

Proceeding as before, we find  

.= 132312123 aaab  (51) 

This shows that the three kink solutions are obtainable. The existence of three soliton solutions often 
indicates the complete integrability of the equation under examination but, other criteria, such as Lax pair are 
needed to confirm integrability, 

3.3. The negative-order modified CBS equation  

We next develop the negative-order modified CBS equation. Proceeding as before, we use the negative 
order hierarchy  

,=)(1 yt vv −Φ  (52) 

where the recursion operator 1Φ  for the modified CBS is the same recursion operator for the modified KdV 
equation given in (4). In other words, we use  

( ) ,=)(44 122
ytxxx vuvuu −⋅∂++∂ −  (53) 

which gives  

.=)(44 12
ytxtxxt vvvvvvv −⋅∂++ −  (54) 

Using  

,
4
4

=)(=),,(
2

1

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ++
−⋅∂−

x

ytxxt
t v

vvvv
vvtyxψ  (55) 

carries (54) to  
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.=),,(44 2
yxtxxt vtyxvvvv −++ ψ  (56) 

Differentiating (56) with respect to x  and using (55) we obtain  

0.=),,(4124 2
xyxxtxxtxxxt vtyxvvvvvvv ++++ ψ  (57) 

3.4. Multiple soliton solutions  

To determine the dispersion relation, we set  

( ) ,),,(arctan=),,( xtyxfRtyxv  (58) 

where the auxiliary function ),,( tyxf  is given as  

( , , ) = , = 1,2,3,k x r y c ti i if x y t e i+ −  (59) 

for the single soliton solution. Substituting (58) into the negative-order modified CBS equation (57) gives the 
dispersion relations by  

2= , = 1,2,3,i
i

i

rc i
k

 (60) 

and  2.=R  Therefore we set the phase variable as  

2( , , ) = , = 1,2,3.i
i i i

i

rx y t k x r y t i
k

θ + −  (61) 

Using (58) gives the single soliton solution  

.
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2=),,(
)2

1

1
112(

2
1

1
11

1

t
k

r
yrxk

t
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r
yrxk
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ektyxv
−+
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+

 (62) 

For the two soliton solutions we set the auxiliary functions as  
( )
( )

1 2

1 2
12

, , ,

, , 1 .

f x y t e e

g x y t a e

θ θ

θ θ+

= +

= −
 (63) 

where 12a  is the phase shift and 1,2,3=),,( itxiθ  is given in (61). Substituting (63) and (58) into the 
negative-order CBS equation (56) we obtain the phase shift by  

,
)(
)(= 2

21

2
21

12 kk
kka

+
−

 (64) 

and hence we set the phase shifts by  
2

2

( )
= , 1 < 3.

( )
i j

ij
i j

k k
a i j

k k
−

≤ ≤
+

 (65) 

Notice that the negative-order CBS equation does not show resonance because 012 ≠a  or ∞  for |||| 21 kk ≠ . 
Combining (63) and (64) and substituting the outcome into (58), we obtain the two soliton solutions. 

For the three soliton solutions, we set  
3

1 2 3
123

=1

1 3 2 31 2
12 13 23

( , , ) ,

( , , ) 1 .

i

i
f x y t e b e

g x y t a e a e a e

θ θ θ θ

θ θ θ θθ θ

+ +

+ ++

= −

= − − −

∑
 (66) 

Proceeding as before, we find .= 132312123 aaab  This shows that the three kink solutions are obtainable. 
We conclude from the results obtained above that the modified CBS equation and the negative-oder 

modified CBS equation have distinct kink solutions. This is due to the distinct dispersion relations. The 
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dispersion relations for the modified CBS equation and the negative-order modified CBS equation were 
derived as 2 , = 1,2,3i ir k i  and 2/ , = 1,2,3i ir k i , respectively. However, the two equations have multiple kink 
solutions where the phase shifts of the interaction of solitons are identical and both do not show resonance. 

4. DISCUSSION  

We used the inverse of the recursion operators for the KdV equation and the mKdV equation, given 
in (2) and (4), respectively, to formally derive the negative-order CBS equation and the negative-order 
modified CBS equation. We have shown that the newly derived equations possess multiple soliton and 
multiple kink solutions. We determined the dispersion relation for each equation, and showed that the phase 
shifts are of the Hirota’s type. Moreover, we showed that the CBS equations and their negative-order 
versions have distinct solutions due to the occurrence of distinct dispersion relations. 

REFERENCES  

1. D. BALDWIN, W. HEREMAN,  A symbolic algorithm for computing recursion operators of nonlinear partial differential 
equations, International Journal of Computer Mathematics, 87, pp. 1094–1119, 2010. 

2. A. FOKAS,  Symmetries and integrability, Studies in Applied Mathematics, 77, pp. 253–299, 1987.   
3. A.M. WAZWAZ, Multiple-soliton solutions for the Calogero-Bogoyavlenskii-Schiff, Jimbo-Miwa and YTSF equations, Appl. 

Math. Comput., 203, pp. 592–597, 2008.   
4. P.J. OLVER, Evolution equations possessing infinitely many symmetries, J. Math. Phys., 18 (6), pp. 1212–1215, 1977. 
5. S. LOU, Higher dimensional integrable models with a common recursion operator, Commun. Theor. Phys., 28, pp. 41–50 1977. 
6. F. MAGRI,  Lectures Notes in Physics, Springer, Berlin, 1980.   
7. D. ZHANG, J. JI, S. ZHAO,  Soliton scattering with amplitude changes of a negative order AKNS equation, Physica D, 238, 

pp. 2361–2367, 2009.   
8. J.M. VEROSKY, Negative powers of Olver recursion operators, J. Math. Phys., 32, pp. 1733–1736, 1991. 
9. Z. QIAO, E. FAN, Negative-order Korteweg-de Vries equation, Phys. Rev. E, 86, 016601, 2012. 
10. R. HIROTA, The Direct Method in Soliton Theory, Cambridge University Press, Cambridge, 2004. 
11. S.A. KHOURY, Soliton and periodic solutions for higher order wave equations of KdV type (I), Chaos, Solitons & Fractals, 26, 

pp. 25–32, 2005. 
12. S.A. KHOURY, Exact solutions for a class of nonlinear evolution equations: A unified ansätze approach, Chaos, Solitons & 

Fractals, 36 , pp. 1181–1188, 2008. 
13. S.A. KHOURY, New ansätz for obtaining wave solutions of the generalized Camassa-Holm equation, Chaos, 

Solitons & Fractals, 25, pp. 705–710, 2005. 
14. H. LEBLOND, D. MIHALACHE, Models of few optical cycle solitons beyond the slowly varying envelope approximation, Phys. 

Rep., 523, pp. 61–126, 2013. 
15. H. LEBLOND, D. MIHALACHE, Few–optical–cycle solitons: Modified Korteweg-de Vries sine-Gordon equation versus other 

non–slowly–varying–envelope–approximation models, Phys. Rev. A 79, 063835, 2009. 
16. D. MIHALACHE, Multidimensional localized structures in optical and matter-wave media: a topical survey of recent literature, 

Rom. Rep. Phys., 69, 403, 2017. 
17. A.M. WAZWAZ, Partial Differential Equations and Solitary Waves Theorem, Springer and HEP, Berlin, 2009. 
18. A.M. WAZWAZ, Integrable couplings of the Burgers equation and the Sharma-Tasso-Olver equation: Multiple kink solutions, 

Rom. Rep. Phys., 65, pp. 383–390, 2013. 
19. A.M. WAZWAZ, Multiple soliton solutions for two integrable couplings of the modified Korteweg-de Vries equation, Proc. 

Romanian Acad. A, 14, pp. 219–225, 2013. 
20. N. GOYAL, A.M. WAZWAZ, R.K. GUPTA, Applications of Maple software to derive exact solutions of generalized fifth-order 

Korteweg-de Vries equation with time dependent coefficients, Rom. Rep. Phys., 68, pp. 99–111, 2016. 
21. T. COLLINS et al., Dynamics of shallow water waves with logarithmic nonlinearity, Rom. Rep. Phys., 68, pp. 943–961, 2016. 
22. A.M. WAZWAZ, Multiple kink solutions for the (2+1)-dimensional integrable Gardner equation, Proc. Romanian Acad. A, 15, 

pp. 241–246, 2014. 
23. A.M. WAZWAZ, Gaussian solitary waves for the logarithmic-KdV and the logarithmic-KP equations, Physica Scripta, 89, 

095206, 2014. 
24. A.M. WAZWAZ, New (3+1)-dimensional evolution equations with Burgers and Sharma-Tasso-Olver equations constituting the 

main parts, Proc. Romanian Acad. A, 16, pp. 32–40, 2015. 
25. A.M. WAZWAZ, Multiple kink solutions for the second heavenly equation and the asymmetric heavenly equation, Proc. 

Romanian Acad. A, 17, pp. 210–214, 2016. 

Received May 15, 2017 


