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Abstract: Nonlinear dynamics analyses of the knee joint were performed to estimate the dynamic 
stability during the flexion and extension motion for humans with osteoarthritis. The experimental 
data were acquired with a complex goniometer system. Phase plane, time lag, correlation dimension, 
and the largest Lyapunov exponent were calculated from experimental data. The largest Lyapunov 
exponents obtained for each test of human knee were positives. The largest Lyapunov exponents for 
the osteoarthritis patients have, in general, higher values compared with healthy subjects. 
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1. INTRODUCTION 

Osteoarthritis (OA) is the fourth most frequent cause of health problems in women and the eighth most 
frequent cause in men. About 40 percent of men over the age of 70 years are affected by osteoarthritis of the 
knee; about 80 percent of patients with osteoarthritis suffer from limited mobility, and 25 percent of these 
patients can no longer perform the most basic activities of daily life. Knee osteoarthritis involves a degenerative 
process of the knee joint cartilage, leading to its eventual loss. This degenerative process can be generally 
caused by obesity, excessive physical activity, joint trauma, immobilization or hyper-mobility. The range of 
knee flexion angle in the sagittal plane as well as the peak flexion angles are generally lower in patients with 
knee osteoarthritis [1, 2]. In addition, patients with knee osteoarthritis often report that they feel unstable. 
Joint laxity refers to static stability, but, taking into account the possibility of falling which can occur during 
movements, joint laxity also implies problems of dynamic stability [3, 4]. Increased gait variability has been 
associated with an increased risk of falling in elderly subjects. Stride-to-stride variability in the control of 
gait is known to be a predictor of falling [5, 6]. Consequently, locomotion analysis is a valuable 
complementary tool for diagnosis and treatment of orthopedic, muscular and neurological diseases.  

Nonlinear analyses have been used in the field of biomechanics to study various aspects of human 
locomotion, including differences between normal and pathological walking gait, the effects of age and illness 
and the stability of walking subject to continuous perturbations [5, 7–9]. Furthermore, there is a growing 
literature on the possible relevance of the Lyapunov exponents to assess movement stability [8–11]. 
Lyapunov exponents have been used to quantify the local dynamic stability of human walking kinematics [8] 
and the nonlinear motion of the healthy human knee joint [12]; to measure the balance control of standing in 
humans [13]; to study the stability of amputees with prosthetic legs [14]; and to quantify the stability of the 
knee in the sagittal plane [15, 16]. The Lyapunov exponents have been used both in humans and in robots for 
the study of nonlinear dynamics. The effects of the task to be performed and the change in environment on 
robot behavior have been studied using experiments and chaos theory [17–19].  

Based on analyses using Lyapunov exponents, control techniques have been developed for the biped 
humanoid robot that moves through human imitation [20]. Experimental results indicate that a deterministic 
nonlinear gait is possible in a passive dynamic walking robot [21]. This methods could be also used to study 
the stability of new hybrid robots used in medical field, for minimally invasive surgery [22]. 

The aim of this paper is to investigate the nonlinear motion of the human knee joint using nonlinear 
dynamics stability analysis. We compare the dynamics of the flexion-extension knee in a healthy subject 
group to that of a patient group with OA knees. A quantitative measure of knee stability using Lyapunov 
exponents can provide the clinical team an essential tool for the diagnosis of movement pathologies, for finding 
proper treatments and for monitoring patient progress. 
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2. EXPERIMENTAL STUDY 

2.1. Apparatus 

The experimental method which allows to obtain the kinematic parameter diagrams for the human knee 
joint is based on Biometrics data acqusition system with flexible electrogoniometers [8, 23–25]. The flexion-
extension process was performed in sagittal plane. A data series for both human knee joints of each OA 
patient and for one human knee of each healthy subject during flexion-extension repetitive cycles are 
obtained.  

2.2. Participants 

In order to obtain the flexion-extension diagram developed by the human knee joints we first analyze 
seven healthy volunteers subjects, all men, for which experimental data were acquired for walking on the 
treadmill for three minutes at a speed of 3.6 km/h. They were pain-free, without any evidence or history of 
arthritic disease, or record of surgery to the lower limbs. The experimental tests were carried out in the 
Laboratory of Biomechanics from the INCESA – Center of Advanced Research – of the University of 
Craiova. The osteoarthritis patient group consisted of 5 elderly patients with OA knee, who were prior 
evaluated in the first or second stage of OA. For the suffering subjects, the experimental test consisted of 
walking on treadmill for three minutes at a speed of 3.6 km/h. The anthropometric data were collected from 
the healthy subjects, and from the patients, respectively. Table 1 shows the mean values and standard 
deviations for anthropometric data of healthy subjects. We noted Hip-Knee distance with H-K dist and Knee-
Ankle distance with K-A dist.  

Table 1 

Mean values and standard deviations 
of anthropometric data of healthy subjects 

Indicat. Age [years] Weight [kg ] Height [cm] H–K dist [cm] K–A dist [cm] 
Average 31.33 74.55 173.77 44.56 41.11 
Standard Deviation 3.94 8.76 7.25 4.61 4.075 

Table 2 shows the mean values and standard deviations for anthropometric data of subjects affected by OA. 

Table 2 

Mean values and standard deviations of anthropometric data of patients with OA 

Indicat. Age [years] Weight [kg ] Height [cm] H-K dist [cm] K-A dist [cm] 
Average 53.66 78.5 173 45.17 40.33 
Standard  Deviation 4.76 16.42 10.47 6.24 6.09 

2.3. Procedure  

The zero angular position for the knee was defined when the femoral axis and tibial axis are disposed 
vertically, Fig.1. A time series was constructed for each test joint from the flexion-extension angle. The 
angular displacement diagram during knee flexion-extension process obtained for a healthy human  is shown 
in Fig. 2.  

For characterizing the underlying complexity during movement, the experimental data are analyzed 
using the Largest Lyapunov Exponents (LLE) and correlation dimensions of angular amplitude in human 
knee joint; they were used as the dynamic characteristic from the time series of the flexion-extension angle 
of human knee joint in order to reveal the chaotic characteristic. The LLE is a nonlinear measure that can 
quantify the exponential divergence of the neighboring movement trajectories. It is a measure of its 
dependence on initial conditions and of a dynamical system stability. The LLE values for an unstable system 
that diverges with data that are described by mathematical chaos define complexity, or highly 
variable fluctuations in physiological processes resembling mathematical chaos, is positive.  
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Fig.1 – Knee angle measurements. Fig. 2 – Angular diagram of the knee joint for a healthy subject. 

In next section, we present the results obtained applying different tools of nonlinear dynamics. 

3. LYAPUNOV EXPONENT 

The state space S is reconstructed using the delay coordinates vectors [26]: 

( ) ( ) ( )( ){ }0 0 0, ,.........., 1 ,n s s s gx s t nT s t nT T s t nT d T= + + + + + −  (1)

where s(.) is a measured scalar function, Ts is the sampling time, n = 1,2,...,dE, T = kTs  is an appropriately 
chosen time delay, and dE is the embedding dimension. 
The embedding dimension dE must be large enough so that the reconstructed orbit does not overlap with 
itself. The dynamics in the reconstructed state space is equivalent to the original dynamics. An attractor in 
the reconstructed state space has the same invariants, such as Lyapunov exponents [27]. 

The false nearest-neighbor (FNN) method, introduced by [28], is one of the most used method for 
measuring the minimal embedding dimension. The minimum dimension needed to reconstruct the chaotic 
flow is marked by a vanishing fraction of FNN [29]. The embedding dimension is chosen where this 
percentage of false nearest neighbors approaches zero [17]. Lyapunov exponents, λi, provide a measure of 
the sensitivity of the system to its initial conditions. They exhibit the rate of divergence or convergence of 
the nearby trajectories from each other in state space and are fundamentally used to distinguish the chaotic 
and non-chaotic behavior [17]. If a 3-dimensional state space is considered, there will be an exponent for 
each dimension: all negative exponents will indicate the presence of a fixed point; one zero and the other 
negative indicate a limit cycle; one positive indicate a chaotic attractor [8]. 

In order to characterize the behavior of a dynamical system the sign of Lyapunov exponents must be 
determined. The value of the LLE is expressed in bits of information/second and is the main exponent that 
quantifies the exponential divergence of the neighboring trajectories in the reconstructed state space. 
For this research the Lyapunov exponents are calculated using the approach defined by [30]. 

4. RESULTS 

The angular amplitudes of human knee flexion-extension (fl-ex) have been obtained for each subject 
from the report generated by the Biometrics gathering system, as data files type .txt. We obtained a total of 
seven time series containing 17 000 data each, for the fl-ex movement of the each right knee of healthy 
subjects and 10 time series obtained from both knees of the five OA patients. For the data analysis the 
beginning and the final regions of time series were cut off in order to remove the transient data. For a more 
accurate representation of human joint variability, unfiltered data were analyzed in this study. The 
amplitudes range of knee fl-ex is between 67.22O and 71.29O. The medium amplitude for this healthy subject 
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is 68.346 O. The medium amplitudes for all healthy subjects are given in Table 3. The medium knee 
amplitudes of the healthy subjects ranged from 61.444O to 68.756O with their mean value 63.765O, as shown 
in Fig. 3a.  

In Fig. 3b the medium cycle of healthy subject, and of the healthy and OA knees of patient are 
shown.The medium amplitudes for all patients are given in Table 4. 

 
Fig. 3 – a) Averaged knee angle time series for the healthy subjects; 

b) averaged knee angle time series for all subjects and patients. 

Table 3 

Mean amplitude healthy subjects 

Subject 1 2 3 4 5 6 7 Mean value 
Amplitude [O] 68.756 62.672 63.127 63.484 62.743 64.128 61.444 63.674 

Table 4 

Mean amplitude for OA patients 

Patient 1 2 3 4 5 Mean value 
Amplitude OA knee [O] 57.012 51.648 51.727 49.031 47.527 51.389 
Amplitude healthy knee [O] 64.232 61.431 60.021 59.557 56.788 60.405 

From Tables 5 and Table 6 we can observe that the OA step length is shorter than normal step length 
and OA speed is slower. This could be a defensive system against the disease and pain. Reduced walking 
speed and step length denoted decreasing knee moments as an adjusting procedure. 

Table 5 

Gait measures for healthy subjects 

Subject 1 2 3 4 5 6 7 Mean value 
Distance [m] 180 176 184 188 197 201 180 186.571 
No. of steps 280 284 294 314 302 310 279 294.714 
Time [s] 180 180 180 180 180 180 180 180 
Velocity [m/s] 1.000 0.9778 1.0222 1.0444 1.0944 1.1167 1.000 1.0365 
Step length [m] 0.6429 0.6197 0.6259 0.5987 0.6523 0.6484 0.6452 0.6333 
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Table 5 

Gait measures for OA patients 
Patient 1 2 3 4 5 Mean value 
Distance [m] 168 165 164 166 159 164.4 
No. of steps 316 311 314 304 293 307.6 
Time [s] 180 180 180 180 180 180 
Velocity [m/s] 0.9333 0.9167 0.9111 0.9222 0.8833 0.9133 
Step length [m] 0.5316 0.5305 0.5223 0.5461 0.5427 0.5346 

For the patients, the amplitudes of the OA knee ranged from 47.527 O to 57.012 O, with the mean value 
of 51.389 O, as shown in Fig. 4. For the healthy knee of the patients, the amplitudes ranged from 56.788 O to 
64.232 O, the mean value was 60.405 O, Fig. 4b. The maximum fl-ex angles were significantly different for 
the healthy knees of patients and for the OA knees of patients (p = 0.0025 < 0.05). The maximum flexion 
angles were not significantly different for the healthy knees of patients and for the knees of healthy subjects 
(p = 0.0568 > 0.05). The flexion angle during the gait cycle revealed differences with respect to flexion 
amplitude between the OA patients and the healthy subjects. The OA subjects had less range of motion 
during the gait cycle than the healthy subjects. A large difference between the amplitude of knee flexion 
during 25–50% of gait cycle phase and 65–80% of gait cycle phase is revealed. The statistical analysis 
revealed that the OA knees were less flexed throughout the gait cycle than the healthy subjects were 
(p = 0.000051) but, also, the healthy knees of the patients were less flexed than of the healthy subjects. This 
is explained by the influence of the OA knees pain and by body tendency of maintaining the stability when 
reaching the knee flexion amplitude. 

Phase plane portraits can be used to characterize the kinematics of the system and provide a better 
understanding of the steady state dynamics. The phase plane plot is a two-dimensional plot in which the time 
derivative dφ is plotted versus φ at each data point. The phase plane plots are shown in Fig. 4. For the healthy 
human subjects, Fig. 4a, no structure is evident in the plot. For periodic data the phase plane plot is a closed 
curve. The phase plane plot for OA knee is shown Fig. 4b and the phase plane plot for an OA patient for the 
healthy knee is shown in Fig. 4c. The phase plane diagrams for OA patients look more irregular than the 
phase plane diagram for healthy subjects. Next for all the subjects we apply a Fast Fourier Transform 
algorithm for the angular positions. Random and chaotic data give rise to broad spectra (Fig. 5). The periodic 
data produce a dominant peak in the spectrum. 
 

 
Fig. 4 – Phase-plane portraits. 
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Fig. 5 – Fast Fourier Transform (FFT) for the angular position of an OA subject. 

 
Fig. 6 – Time lag, T, for three healthy subjects. 

An appropriate time lag, T, was determined by using the average mutual information (AMI) function 
which evaluates the amount of information shared between two data sets over a range of time delays. This 
criterion sets the time lag equal to the value of delay corresponding to the first minimum of the AMI 
function. Figure 6 shows the time lags calculated for three healthy subjects.  

A suitable embedding dimension was chosen by using the false nearest neighbour (FNN) method. 
Embedding dimension is the minimum value that trajectories of the reconstructed state vector may not cross 
over each other in state space. Total percentage of false neighbours for the human knee was computed by 
FNN method, and the number of dimensions was chosen where this percentage approaches zero. The results 
were similar for all seven time series and indicated an appropriate embedding dimension of dE = 5.  

In this research we calculated the LLE using the method of Rosenstein et al. [30 ]. The results can 
provide the clinical and design, an essential mean to diagnose gait pathologies, administer proper treatments, 
and monitor patient progress. The LLE is a measure of the rate at which nearby trajectories in phase space 
diverge. The LLE calculated for all time series were positive. Figure 7 shows the average logarithmic divergence 
defined by Rosenstein et al. [30], solid curve, function of time for a healthy subject. For this curve there is a 
linear region that is used to calculate the Lyapunov exponent and the curve saturates for longer times. The 
linear best-fit line to the curve obtained by the average logarithmic divergence is the dashed line in Fig. 7. 
The LLE was approximated from the experimental knee joint angle data as the slope of the linear best-fit line 
to the curve (the slope of dashed line). For an OA patient the linear best-fit line to the average logarithmic 
divergence is the dotted line Fig. 7. Figure 8 shows the LLE for the knee joint of all seven healthy subjects. 

The minimum value for LLE was 2.228, the maximum value was 2.607 and the mean value was 2.418. 



7 Nonlinear dynamics of normal and osteoarthritic human knee  359

     
Fig. 7 – Average logarithmic divergence function of time.         Fig. 8 – Lyapunov exponents for the seven subjects. 

Figure 9 shows the LLE for all the OA patients and the mean value for the healthy subjects. 
For the OA patients we observe higher values than the mean value for the healthy subjects. The 
minimum value for OA patients is 2.922 and the maximum value is 5.080. For the patients the OA 
knee has larger value for the LLE than the healthy patient knee. Subject 1 makes exception from 
this rule. 

 
Fig. 9 – Lyapunov exponent for all the patients  

and mean value for healthy subjects. 

5. CONCLUSIONS 

In this research we presented an analysis for a bipedal system with osteoarthritis in the knee joint. The 
paper is intended to be used in robotics, in rehabilitation and in the medical field for prosthetic devices. The 
kinematic data of the fl-ex angles for human knee motion were analyzed. We applied the nonlinear analysis 
to the fl-ex movements of the human knee. The LLE obtained for each test of human knee were positive 
values. We observed the increasing of the LLE for the OA patients with respect to healthy subjects. The 
ability to analyze the nonlinear dynamics on individuals and robots has the potential to provide insight into 
normal and abnormal motions in humans, and a better design for robotics used for rehabilitation.  
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