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Abstract. The cnoidal method is used to analyse the behaviour of multilayer films with randomly 
inserted defects. These structures have a significant potential to architectural acoustics. The film is 
consisted of alternating layers of material with different mechanical properties, following a triadic 
Cantor sequence, and despite of its non-periodicity, it behaves like periodic sonic composites with full 
band-gaps and localised modes around defects. The cnoidal method is furnishing the solutions 
expressed as a sum of linear and nonlinear superposition of cnoidal waves. The significant evanescent 
behavior of the film results from more favourable frequencies and spatial matching of coupled modes 
in the film, leading to widening of the full band gaps. 
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1. INTRODUCTION 

The inverse scattering transform is extensively used to solve the wave propagation problems [1–4]. The 
theta-function representation of solutions or cnoidal method is describable as a linear superposition of Jacobi 
elliptic functions (cnoidal functions) and additional terms, which include nonlinear interactions among them [5]. 

The cnoidal functions are much richer than the trigonometric or hyperbolic functions, that is, the 
modulus 0 1m≤ ≤  of the cnoidal function, can be varied to obtain a sine or cosine function, a Stokes 
function or a solitonic function, sech or tanh [6]. A great deal of work has been done to study the periodic 
sonic composites which exhibit important features of sonicity such as full band-gaps and localized modes 
around interfaces. A review of the physical aspects of sonic materials is reported by Miyashita [7]. The full 
band-gaps in periodic sonic composites are analysed not only in experimental works [8–10], but also in 
theoretical ones [11–17]. 

In the presence of defects, sonic structures exhibit significant localized modes and a great evanescent 
behavior [18–30]. We note that the non-periodicity can also lead to full band-gaps generation [31]. In the 
multilayer film consisting of alternating layers of different materials following a triadic Cantor sequence, the  
subharmonic waves are the key for sonicity.  An anharmonic coupling between the extended-mode (phonon) 
and the localized-mode (fracton) vibration regimes explained this phenomenon. 

Allipi [32], Alippi et al. [33, 34] and Craciun et al. [35] put into evidence the extremely low thresholds 
for subharmonic waves in artificial piezoelectric plates with Cantor-like structure, as compared to the corresponding 
homogeneous and periodical plates. They demonstrate that the large enhancement of non-linear interaction 
results from the spatial matching of coupled fractons and phonons modes. The existence of multiple fracton 
and phonon modes in the displacement field was analyzed by Scalerandi et al. [36] and Chiroiu et al. [37].  

This paper is organized as follows: In section 2 the cnoidal method is shortly presented. In the section 3, 
the model of the film with defects is described. The analytical solutions of the equations are derived by using 
the cnoidal method. The numerical results and discussion are also presented. We show that the presence of 
defects breaks the symmetry of the waves and widens the size of band-gaps. The role of the rotational angle 
of the square defects on the distribution of localized modes is investigated. Finally, the Section 4 contains the 
conclusions.  
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2. THE CNOIDAL METHOD 

This method requires brief information necessary to describe the cnoidal waves [5]. The arc length of 

the ellipse is related to the integral 
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and observed that (2) defines the inverse of the trigonometric function sin  if we use the notations sint = θ  
and sin wψ = . He defines a new pair of inverse functions from (1) 
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where the argument v  and parameter m  are the same throughout relations. 
Consider now the nonlinear system of equations that govern the motion of a sonic structure 
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with 1,2,...,i n= , and , , ...a b c constants.  
The system of equations (6) has the remarkable property that it can be reduced to Weierstrass 

equations. The cnoidal method is suitable to solve the equations (6). To simplify the presentation, let us omit 
the index i  and note the solution by ( )tθ . 

We introduce the function transformation 
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Further, we write the solution (8) under the form 
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for tη = −ω + φ . The first term linθ represents, as above, a linear superposition of cnoidal waves.  Indeed, 
after a little manipulation and algebraic calculus, (12) gives 
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In (13) we recognize the expression [6] 
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The second term intθ represents a nonlinear superposition or interaction among cnoidal waves. We 
write this term as 
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If km  take the values 0  or 1 , the relation (15) is directly verified. For 0 1km≤ ≤ , the relation is 
numerically verified with an error of 7| | 5 10e −≤ × . Consequently, we have 
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As a result, the cnoidal method yields to solutions consisting of a linear superposition and a nonlinear 
superposition of cnoidal waves. 

3. THE SONIC STRUCTURE WITH DEFECTS 

The film consists of alternating layers of piezoelectric ceramics (PZ) and the epoxy resin (ER), 
following a triadic Cantor sequence with 31 elements as the host [31]. The length of the plate is l , the width 
of the smallest layer is / 81l  and the thickness of the plate is 2h . The width of the plate is d  (Fig.1). The 
square defects are composed of aluminum (longitudinal velocities 6 260ms-1 and density 2700 kg·m-3). The 
location and the rotation angle θ  with respect to 1Ox of these defects are known. The defects are oriented 
with respect to θ = 30o with respect to 1Ox .  

The piezoelectric material is characterized by two second-order elastic constants, three third-order 
elastic constants, two (linear and nonlinear) dielectric constants and two (linear and nonlinear) coefficients of 
piezoelectricity [31–33]. Throughout the paper, repeated indices denote summation over the range (1, 2, 3). 
An index followed by a comma represents partial differentiation with respect to space variables and a 
superposed dot indicates differentiation with respect to time. 

 
Fig. 1 – The plate with Cantor-like structure with four square defects. 
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The calculus is carried out for l =  67.5 mm and 2h = 0.3 mm. The eigenfrequencies for the film with 
and without defects are shown in Table 1 and Table 2, respectively. We see that as the angle θ  is increasing, 
the computed eigenfrequencies very little increase, to a maximum one degree. The results indicate that the 
position of the localized modes is independent of the orientation of the square defects in the film. 

Table 1 

Computed eigenfrequencies for the film without defects 

/ 2ω π  
 

100.2 
± 0.05 

167 
± 0.01 

217.1 
± 0.03 

250.5 
± 0.1 

334 
± 0.1 

367.4 
± 0.05 

417.5 
± 0.1 

501 
± 0.02 

584.5 
± 0.1 

Table 2 

Computed eigenfrequencies for the film with defects with respect to θ  

/ 2ω π  
 

100.2 
± 0.05 

167 
± 0.01 

217.1 
± 0.03 

250.5 
± 0.1 

334 
± 0.1 

367.4 
± 0.05 

417.5 
± 0.1 

501 
± 0.02 

584.5 
± 0.1 

θ =  5o 100.2 
± 0.05 

167,2 
± 0.01 

217.1 
± 0.03 

250.5 
± 0.1 

334.1 
± 0.1 

367.6 
± 0.05 

417.6 
± 0.1 

501.3 
± 0.02 

584.9 
± 0.1 

θ = 15o 100.2 
± 0.05 

167,4 
± 0.01 

217.3 
± 0.03 

250.7 
± 0.1 

334.2 
± 0.1 

367.7 
± 0.05 

417.9 
± 0.1 

501.5 
± 0.02 

585.1 
± 0.1 

θ = 25o 100.25 
± 0.05 

167,5 
± 0.01 

217.7 
± 0.03 

250.8 
± 0.1 

334.3 
± 0.1 

367.9 
± 0.05 

418.2 
± 0.1 

501.6 
± 0.02 

585.2 
± 0.1 

θ = 35o 100.33 
± 0.05 

167,5 
± 0.01 

218.0 
± 0.03 

251.2 
± 0.1 

334.7 
± 0.1 

368.1 
± 0.05 

418.3 
± 0.1 

501.7 
± 0.02 

585.3 
± 0.1 

θ = 45o 100.38 
± 0.05 

167.8 
± 0.01 

218.0 
± 0.03 

251.4 
± 0.1 

334.9 
± 0.1 

368.2 
± 0.05 

418.4 
± 0.1 

501.8 
± 0.02 

585.4 
± 0.1 

The structure and size of the band-gap depend on 0E . If 0E  is increased above a threshold value 
0 5.27VthE =  the / 2ω  subharmonic generation is observed [31]. Note that Alippi et al. [28] obtain in the 

Cantor-like sample typical values of the lowest threshold voltages of 3–5 V. The amplitude of waves at the 
surface of the plate is function of 0E .  

The result of superposition of normal and subharmonic modes is the generation of two kind of vibration 
regimes: a localised-mode (fracton) regime and an extended-vibration (phonon) regime [31]. The fracton 
vibrations are mostly localised on a few elements, while the phonon vibrations essentially extend to the whole 
film. In the case of a periodical film the dispersion prevents good frequency matching between the fundamental 
and appropriate subharmonic modes. The results show that the defects cancel wave in the central area, a little 
more than if no defects are in the film, and in the rest of areas the wave picture is little altered and the symmetry 
disappears. The fracton mode is found mostly near the eigenfrequencies in both cases. The band structure for the 
wave propagation in direction 1Ox  is displayed in Fig. 2, for the film without/with defects, respectively. 
Defects change the aspect of the waves in the central area, and in the rest of areas the propagation picture is the 
same. The reduced unit of frequency is 0/ 2a cω π with 0c the speed of sound in air.  We draw from Fig. 2 the 
conclusion that the size of the band-gap is favoured by the presence of defects. The band-gap area is large 
and compact. We remember that in the band-gap zone the film can prohibit the propagation of Lamb waves 
in  1Ox  direction.   

It seems that the orientation of the square defects has no effect on the Lamb band structure. We have 
increased the number of defects in the central area to 45. The strange observation is that for a number of 
defects greater than 45, the size of the band-gap is decreases sharply. In addition, the compactness of the 
bad-gap deteriorates, as seen in Fig. 3. The incident and scattered acoustic pressure (amplitude) of the filme 
is presented in Fig. 4a, b for both cases, with and without defects oriented with respect to 300 with respect to 

1Ox . The incident sound pulse impinges perpendicularly the film. The comparison of both maps confirms the 
acoustical reduction role of defects. 
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Fig. 2 – The Lamb band structures for the film: 

a) without defects, b) with defects. 

 

 
Fig. 3 – The Lamb band structures for the film: 

a) four defects, b) 45 defects, c) 50 defects. 
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Fig 4 – Acoustic pressure (amplitude) of the scattering of the Lamb waves, impinging perpendicularly the film: 

a) film without defects, b) film with defects. 

3. CONCLUSIONS 

In this paper, the cnoidal method is applied to solve the problem of a multilayer film with square 
defects in order to discern some features of sonic composites, and how these defects influence the full band-
gaps and localized modes. The defects have as result more favourable frequencies and spatial matching of 
coupled modes, leading to widening of the full band gaps. The position of the localized modes is independent 
of the orientation of the square defects in the film. In addition, the orientation of the square defects has no 
effect on the Lamb band structure. A strange observation appeared when the number of defects is greater 
than 45. In this case, the size of the band-gap is decreases sharply and the compactness of the bad-gap 
deteriorates. We suppose that these characteristics of the localized modes of the square defects are interested 
to the research on directional sonic filters and narrowband sonic waveguides. 
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