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Abstract: In this paper, we employ an approximate analytical method, namely optimal auxiliary 
functions method (OAFM), to investigate a thin film flow of a fourth grade fluid dawn a long vertical 
cylinder. Our solutions are compared with those obtained by numerical integration. OAFM does not 
depend upon large or small parameters and assures the convergence of the approximate solutions after 
only one iteration. OAFM is very efficient and effective. 
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1. INTRODUCTION 

The flow of the non-Newtonian fluids is very important for physicians, applied mathematicians and 
engineers, because of its several applications in various fields of science and engineering. In the last few 
decades, these fluids have attracted considerable attention from researchers in many branches of nonlinear 
dynamical systems in science and technology. Examples include the pioneering work of Sakiadis [1] who 
investigated the flow of a viscous fluid past a moving solid surface or Chen [2] who studied mixed 
convection flow over a stretching surface. Zhang and Li [3] analyzed the thin film flow of the third grade 
fluid, Elahi and Riaz [4] investigated the non-Newtonian MHD flow with variable viscosity in a third grade 
fluid. Siddiqui et al. [5] applied homotopy perturbation method and traditional perturbation method to obtain 
analytic approximations to thin fluid flow of a fourth grade fluid on the outer of a long vertical cylinder. 
Also, Sajid et al. [6] discussed the steady flow of a fourth grade fluid past a porous plate and Hayat and Sajid 
[7] developed a series solution for the same subject. Mabood [8] analyzed the thin film flow of an incompressible 
third grade fluid down on an inclined plane. There are a lot of other features such as, time-dependency, 
history effects, other non-linear issues, yield stress, and so on [9–14]. 

Most physical problems are nonlinear but the linear analysis is often insufficient to describe the 
behavior of physical systems adequately. An exact solution for nonlinear systems is often scarce at least at 
the present state of knowledge. In this respect, new and innovative approaches capable to solve nonlinear 
dynamical systems should be known. Recently some fruitful results have been obtained for solving various 
nonlinear problems. There exist some analytical approaches applicable to nonlinear problems such as weighted 
linearization method [15], the Lindstedt-Poincare method [16], Adomian decomposition method [17], the 
boundary element method [18], the optimal homotopy perturbation method [13], the optimal homotopy 
asymptotic method [14], and so on. All of the above mentioned methods work very well for weakly 
nonlinear problems and some of them work well even for strongly nonlinear systems. It is very important in 
the case of strongly nonlinear problems to ensure the condition of convergence of the solutions.  

In present work we apply OAFM to solve a boundary value problem for nonlinear differential equation 
of thin film flow down a vertical cylinder. The fluid used here is of fourth grade which introduces strongly 
nonlinearities in the study of the problem. 
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2. THE GOVERNING EQUATION 

The fluid considered in this paper is an incompressible, of fourth grade fluid falling on the outside 
surface of an infinitely long vertical cylinder of radius R. The flow is in the form of a thin, uniform and 
axisymmetric film of thickness δ, in contact with stationary air. In cylindrical coordinates, we shall seek a 
velocity field of the form [5, 9, 14]. 

 ( )0,0,= ⎡ ⎤⎣ ⎦V u r  (1) 

If p = p (z) is the pressure, the r-component, θ-component and z-component of momentum can be 
written as 

 ( )
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respectively, where 1 2 1 2 1 2 3α ,α ,β ,β ,γ , γ , γ  and 4γ  are material constants. Supposing that there is no 
pressure gradient in z direction, Eq. (4) becomes [5]. 
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 (5) 
The boundary conditions are 

 ( ) δ
d |0, 0.
d r R
u
r

u R = + ==  (6) 

Defining 

 

( )4
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2 4 2
μ β βδ,  ,  1  ,  ; ,

R μ μ ρ
r R gRf u d k b

R R
+

η = = = + = =
 (7) 

the boundary value problem (5) and (6) reduces to nonlinear differential equation 

 
3 22 2

2 2
d d d d d2 3η 0

dη dη dηdη dη
f f f f fk b

⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥η + + η+ + =⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 (8) 

 ( ) ( )1 0, 0.f f d′= =  (9) 

3. BASIC IDEAS OF OAFM 

Equation (8) with the boundary conditions (9) can be written in a more general form: 

 ( ) ( ) ( )η η η 0,L f g N f+ + =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  (10) 
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where L is a linear operator, g is a known function and N is a nonlinear operator, subject to the boundary 
condition 

 ( ) ( )df η
η , 0.

dη
B f
⎛ ⎞

=⎜ ⎟
⎝ ⎠

 (11) 
In order to obtain an approximate solution of Eqs. (10) and (11) we assume that the approximate 

solution can be expressed in the form with two components: 

 ( ) ( ) ( )0 1η η η, ,   1,2,3, ,= + = …if f f C i p  (12) 

where the initial and the first approximation will be determined as follows.   Substituting Eq. (12) into Eq. (10), 
it results in 

 ( ) ( ) ( ) ( ) ( )0 1 0 1η L η, η η η, 0.i iL f f C g N f f C+ + + + =⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦  (13) 

The initial approximation ( )0 ηf  can be obtained from the following linear equation: 

 ( ) ( ) ( ) ( )0
0 0

d η
η η 0,  η ,  0

d
f

L f g B f
n

⎡ ⎤
+ = =⎡ ⎤ ⎢ ⎥⎣ ⎦

⎣ ⎦
 (14) 

and the first approximation from the equation  

 ( ) ( ) ( ) 1
1 0 1 1

dη, η η, 0,  ,  0. 
dη

⎡ ⎤
+ + = =⎡ ⎤ ⎡ ⎤ ⎢ ⎥⎣ ⎦ ⎣ ⎦
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i i

uL f C N f f C B u  (15) 

Now, the nonlinear term from Eq. (15) is expanded in the form  

 ( ) ( ) ( ) ( ) ( ) ( )1
0 1 0 0

1

η
η η, η η .

!

k
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i
k

f
N f f C N f N f

k

∞
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To avoid the difficulties that appear in solving of nonlinear differential equation (15) and to accelerate 
the rapid convergence of the first approximation ( )1 , if η C   and implicit of the solution ( )f η , instead of the 
last term arising into Eq. (15), we propose an another expression, such that Eq. (15) can be written as 

                                           ( ) ( ) ( ) ( )1 1 0 0 2 0η, η ,  N η η ,  0,   i i jL f C A f C f A f C⎡ ⎤+ + =⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦   

 ( ) ( )1
1

d η
η ,  0,

dη
f

B f
⎡ ⎤

=⎢ ⎥
⎣ ⎦

 (17) 

where A1 and A2 are two arbitrary auxiliary functions depending of the initial approximation ( )0f η   and a 
number of the unknown parameters Ci and Cj, i = 1, 2,…,s,  j = s + 1, s + 2,…,p. The auxiliary functions A1 
and A2 (named optimal auxiliary functions) are not unique, and are of same form like ( )0f η , or of the form 

of ( )0⎡ ⎤⎣ ⎦N f η  or combinations of the forms ( )0f η and ( )0⎡ ⎤⎣ ⎦N f η . For example if ( ) ( )( )0 0or ⎡ ⎤⎣ ⎦f η   N f η a 

polynomial function then ( )1 0 ,⎡ ⎤⎣ ⎦iA f η  C  and ( )2 0 ,⎡ ⎤⎣ ⎦jA f η  C  are a sums of polynomial functions; if 

( ) ( )( )0 0or ⎡ ⎤⎣ ⎦f η   N f η is an exponential function, then A1 and A2 are a sums of an exponential functions; if  

( ) ( )( )0 0or ⎡ ⎤⎣ ⎦f η   N f η  is a trigonometric function, then A1 and A2 are a sums of the trigonometric functions, 

and so on. If in a special case ( )0 0⎡ ⎤ =⎣ ⎦N f η then it is clear that ( )0f η  is an exact solution of Eq. (10). The 
unknown parameters Ci and Cj can be optimally identified via different methods such as the Galerkin 
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method, the Ritz method, the least square method, the collocation method or by minimizing the square 
residual error: 

 ( ) ( )2, η, , dη,
b

i j i j
a

J C C R C C= ∫  (18) 

where ( ) ( ) ( ) ( ), , , , , , , 1, 2, , , 1, 2, ,⎡ ⎤ ⎡ ⎤= + + = … = + +⎣ ⎦ ⎣ ⎦ …i j i j i jR η C C L f η C C g η N f η C C  i s  j s s  p , and 

so on. By this novel method, the approximate solution (12) is well determined. Our procedure is a powerful tool for 
solving nonlinear differential problems without depending on small or large parameters. It should be 
emphasized that our procedure contains the auxiliary functions A1 and A2 which provides with a simple way 
to adjust and control the convergence of the approximate solution after only one iteration.  

4. APPROXIMATE SOLUTIONS OF THE THIN FILM FLOW WITH OAFM 

In what follows we apply our procedure to obtain an approximate solution of Eqs. (8) and (9). For this 
purpose, we choose the linear operator, the function g and the nonlinear operator of the following forms: 

 ( )
2

2
d dη η

dηdη
f fL f = +⎡ ⎤⎣ ⎦  (19) 

 ( )η ηg k=  (20) 

 ( )
3 2 2

2
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⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥= +⎡ ⎤ ⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
 (21) 

The initial approximation f0 is obtained from Eq. (14): 

 ( ) ( )
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0 0 0
02η η 0,  1 0 ,  0.

η ηη
f f fk f d∂ ∂ ∂
+ + = = =
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 (22) 

The solution of Eq. (22) is 

 ( ) ( )2 2 2
0 η 1 ln η η .

4
kf d= + −  (23) 

Substituting Eq. (23) into Eq. (21), the nonlinear operator becomes  

 ( )
22 2
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1 d dη η 2η .
2 η η

⎛ ⎞ ⎛ ⎞
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The first approximation f1 is given by Eq. (17):  
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Taking into account that  
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⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎢ ⎥− − + = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
 (27) 

then Eq. (25) may be written as  

 ( ) ( )
32

31
1 0 2 0

d d 1 d dη  η ,  η η η ,  0.
dη dη 2 dη ηi j

f A f C bk A f C
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We have freedom to choose  

 ( )1 0 33
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where p is an arbitrary integer positive number. Because A1 and A2 are not unique, we can choose and the 
following functions:  
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and so on. 
Using only the expression (29) and (30) of the auxiliary functions, Eq. (28) can be written as  
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2 32 2 2
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1 2 3

2
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1
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p
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η − η − η + η − η + η − η +…+⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟η η η⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞
+ − = = =⎜ ⎟⎜ ⎟
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From Eq. (33) we find the following solution: 

 ( ) ( )
2 32 2 2

1 1
1 2 1

d d d d dη η η , 1 0.
dη η η η d

p

p
f fC C C  f d

η
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= − + − +…+ − = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (34) 

Solving Eq. (34), and then substituting this solution and Eq. (23) into Eq. (12), we obtain approximate 
solution of Eqs. (8) and (9) by OAFM in the form  
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( )
4

2 2 2 3
1 2

6 8 6
4 2 2 4 4 2 3 5

3 42 3
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6 4 2 2 4 7

5 4 2

1 1 d 1η, d lnη 2d η η
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⎛ ⎞ ⎛ ⎞
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i
kf C C η C

C C

C

 (35) 

5. NUMERICAL RESULTS BY OAFM 

We illustrate the accuracy of our procedure for different values of the coefficients k and b. Also we will 
show that the error of the solutions decreases when the number of terms in the auxiliary functions A1 and A2 
increases. The results obtained using OAFM are compared with numerical integration results by using the 
fourth-order Runge-Kutta method. Using Eq. (18), the constants Ci can be determined from conditions: 

  
1 2 3 4 p

0∂ ∂ ∂ ∂ ∂
= = = =…= =

∂ ∂ ∂ ∂ ∂
J J J J J
C C C C C

 (36) 

5.1. First, we consider k = 2, b = 2, d = 1.2, p = 4. From Eqs. (36) one can get  
 

 C1= 0.02010809507891;  C2= –0.443212061022469; 

 C3= –1.46971845415762;  C4= 2.05824705104109. 
 

The approximate velocity with four constants in this case by using OAFM is  

 

( ) 2

3 4

1.44 1.44
1.02010809507891 0.443212061022469

1.44 1.44
1.46971845415762 2.05824705104109 .

∂
= − − − −

∂

− − + −

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

f η
η η

η η η

η η
η η

 (37) 

 

5.2. In this case for same values: k = 2, b = 2, d = 1.2 but p = 5, from Eqs. (36) it holds that  

C1= 0.00493140714889;   C2= – 0.0865225298529617; 
C3= – 4.13589639137958;   C4= 9.72574923625005 

C5= – 7.43698840812736. 

and velocity becomes 

 

( ) 2

3 4

5

1.44 1.441.00493140714889 0.0865225298529617

1.44 1.444.13589639137958 9.72574923625005

1.447.43698840812736 η .
η

∂ ⎛ ⎞ ⎛ ⎞
= − − − −⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
− − + − −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

⎛ ⎞
− −⎜ ⎟

⎝ ⎠

f η
η η

η η η

η η
η η

 (38) 

 

It is easy to verify the accuracy of the obtained solutions if we compare these analytical results with 
numerical ones. From Tables 1 and 2 it can be seen that the analytical solutions of our problem obtained by 
OAFM are very accurate. The examples presented in this section lead to the very important conclusion that 
the accuracy of the obtained results is growing along with increasing the number of constants in the auxiliary 
functions. Our approach does not depend upon small parameters (in Ref. [7] is considered that b ≥ 0.3  is a 
parameter corresponding to strong nonlinearity). 
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Table 1 

Comparison between the OAFM solutions (37) and (38) with numerical solutions 
for k = 2, b = 2, d = 1.2, p = 4 (Eq. (37)) and p = 5 (Eq. (38)) 

η 
Numerical solution         ( )f η   

Eq. (37) 
       ( )f η   
Eq. (38) 

Error of Eq. (37) Error of Eq.(38) 

1 0.3149892726 0.3149902864 0.3149892725 1.01*10-6 3.66*10-7 
1.02 0.2920872677 0.2917634189 0.2922025741 3.25*10-4 1.15*10-4 
1.04 0.2677958645 0.2677841234 0.2677958741 6.89*10-6 9.48*10-9 
1.06 0.2418828814 0.2422461104 0.2418448028 3.63*10-4 3.81*10-5 
1.08 0.2140851463 0.2145652735 0.2140852072 4.80*10-4 6.12*10-8 
1.1 0.1841229205 0.1844175114 0.1841492536 2.94*10-4 2.63*10-5 
1.12 0.1517392282 0.1517400487 0.1517391641 8.20*10-7 6.4*10-8 
1.14 0.1167864570 0.1166398160 0.1167536690 1.46*10-4 3.27*10-5 
1.16 0.0793786596 0.0793792588 0.0793786281 5.96*10-7 3.14*10-8 
1.18 0.0400814166 0.0403378899 0.0401505928 2.56*10-4 6.91*10-5 
1.2 0 0 0 0 0 

5.3. For k = 1, b = 2, d = 1.2, p = 4 we obtain 

 C1 = 0.00022854018451; C2 = –0.00216198649445; 
 

 C3 = –0.53701336395192; C4 = 0.47615841198521. 

( ) 21.44 1.440.50022854018451 0.00216198649445
∂ ⎛ ⎞ ⎛ ⎞

= − − − −⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠
f η

η η
η η η

  

 
3 41.44 1.440.537013363951926 0.476158411985218 .η  η

η η
⎛ ⎞ ⎛ ⎞

− − + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (39) 

5.4. In the last case, for k = 1, b = 2, d = 1.2 but p = 5 we have 

 C1= – 0.00056524385115;  C2 = 0.01651354436441; 
 

 C3= – 0.676547804124;  C4 = 0.87717256349806; 
 

 C5= – 0.38869164165841. 

( ) 2

3 4

5

1.44 1.440.49943475061489 0.01651354436441

1.44 1.440.676547804124 0.87717256379806

1.440.38869164165841 η .
η

∂ ⎛ ⎞ ⎛ ⎞
= − + − −⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
− − + −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

⎛ ⎞
− −⎜ ⎟

⎝ ⎠

f η
η η

η η η

η η
η η

(40) 

Table 2 

Comparison between the OAFM solution (39) and (40) with numerical solutions 
for k = 1, b = 2, d = 1.2, p = 4(Eq. (39)) and p = 5(Eq. (40)) 

 
η Numerical solution        ( )f η   

Eq. (39) 
       ( )f η  

Eq. (40) 

Error of Eq. (39) Error of Eq. (40) 

1 0.1917839251 0.1917878034 0.1917843781 9.41*10-5 4.53*10-7 
1.02 0.1745937891 0.1745669533 0.1745912673 2.68*10-5 2.52*10-6 
1.04 0.1568673294 0.1568678463 0.156867684 5.64*10-6 3.55*10-7 
1.06 0.1385961651 0.138557774 0.1385972549 3.83*10-5 1.11*10-6 
1.08 0.1197907602 0.1198159933 0.1197910245 2.52*10-5 2.64*10-7 
1.1 0.10048675874 0.1004998341 0.1004859761 1.30*10-5 7.88*10-7 
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(continued)
1.12 0.0807509285 0.0807519952 0.0807510956 1.07*10-6 7.67*10-7 
1.14 0.0606850155 0.0606806934 0.0606866534 4.30*10-6 1.66*10-6 
1.16 0.0404254003 0.0404257002 0.0404254824 3*10-7 8.20*10-8 
1.18 0.0201368303 0.0201799364 0.0201313916 4.31*10-5 5.43*10-6 
1.2 0 0 0 0 0 

6. CONCLUSIONS 

In this work, we introduce a new method (OAFM) to propose analytic approximate solutions to the thin 
film flow of a fourth grade fluid down a long vertical cylinder. Our procedure is valid even if the nonlinear 
equation does not contain small or large parameters. 

The proposed construction of the OAFM is different from any other approaches especially referring to 
the auxiliary functions A1 and A2, and the presence of some parameters C1, C2... which ensure a very rapid 
convergence of the solutions. The results obtained by OAFM are growing along with increasing of the 
number of the parameters Ci. The OAFM provides us with simple but rigorous way to control and adjust the 
convergence of the solutions through several convergence – control parameters Ci which are optimally 
determined. It should be emphasized that very good approximations are obtained after only one iteration and 
in only a few terms. Optimal auxiliary functions method is effective, efficient and easy to use. 
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