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Abstract. Stiffened steel plates are components widely used in structural engineering, being especially 
indispensable in ship and aerospace structures. The stiffeners are beams fixed to the plates with the 
purpose to increase its mechanical strength. It is well known that if an axial compressive load is imposed 
to these components the undesired instability phenomenon of buckling can occur. For a specific load 
value, the limit stress is achieved and the plate suffers out-of-plane displacements indicating the buckling 
occurrence. Therefore, in the present work, allying the Constructal Design method, the exhaustive search 
technique and the computational modelling, the influence of rectangular stiffeners in the elasto-plastic 
plate buckling behaviour was analysed aiming its geometric optimization. To do so, a reference steel 
plate without stiffeners was adopted. Its total volume (V), length (a) and width (b) were preserved, but 
some portion of its material was transformed in stiffeners which leads a reduction in its thickness (t). The 
volume fraction (φ) parameter defines this steel portion by the ratio between the stiffeners volume (Vs) 
and V. In addition, as degree of freedoms the number of longitudinal and transversal stiffeners as well as 
the ratio hs/ts between height (hs) and thickness (ts) of the stiffeners were considered. The maximization 
buckling limit stress is adopted as objective function. The results indicate that significant improvements 
in the ultimate buckling stress value can be obtained when a stiffened plate is adopted in relation to a 
reference plate with the same in-plane dimensions and the same material volume. It was also possible to 
define the optimized geometric configuration for the stiffened plate that maximizes its ultimate buckling 
stress, hence conducting to a superior structural performance. 
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1. INTRODUCTION 

Plates and panels are structural components widely employed in several engineering applications. One 
way to increase the mechanical strength of these elements is by insertion of stiffeners, that can be arranged 
longitudinally and/or transversely [1]. 

Among the different loads that can be applied to a plate structure, the compressive longitudinal load 
needs a special attention due to the possibility of the buckling phenomenon occurrence. Unlike columns the 
plates are capable to resist an increment of load after to suffer the elastic buckling [2]. Besides, the addition 
of stiffeners in a plate promotes an increase in its buckling limit stress with a small or even null increment in 
the structure weight. However, the presence of stiffeners also increases its geometric configuration 
complexity, being the computational modeling by means the finite element method (FEM) an effective 
approach for the analysis of these components.  

2. BUCKLING PLATES 

The critical stress that defines the elastic buckling in a thin uniaxial compressed plate is given by [3] 
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where t is the plate thickness, b is the plate width and Kq = 4 for a simply supported plate [2, 4].  
The determination of elastic critical stress is important to understand the different buckling modes of 

thin plates [5]. However, it does not represent its real behavior because geometric and material nonlinearities 
must be taken into account. Therefore when the material yielding happens before the elastic critical stress is 
reached it is said that an inelastic buckling occurs; if it is achieved a stress level higher than critical stress the 
post-buckling stage is developed. Finally, the ultimate stress is defined by the maximum stress that the plate 
can resist before its collapse. In addition, these structural components can resist a significant additional 
compressive loading beyond the critical load allowing its maximum capacity be the sum of critical buckling 
load and the post-buckling load [2]. 

3. COMPUTATIONAL MODELING 

It is well known that the finite element method (FEM) can be used to obtain approximate solutions for 
the mechanical behavior of plates with reasonable accuracy [6]. In the field of structural analysis it is usually 
adopted in its displacement formulation. For this, the structure continuum is divided into a number of small 
regions, the so-called finite elements that are assumed to be interconnected at a discrete number of nodal 
points located on their boundaries [7, 8]. More information about the FEM can be obtained in references [9, 10]. 
The ANSYS software is based on the FEM, being used for the numerical simulations of the present work by 
means the SHELL93 finite element. 

3.1. Numerical analysis of elasto-plastic buckling 

Because of the complexity of the stress-strain relation beyond the elastic buckling state [11] the 
determination of the buckling ultimate stress of a plate is a complex nonlinear analysis. Hence, numerical 
methods are widely recommended and employed for the analysis of the plates post buckling behavior. 

To do so, in the present work a computational model was developed considering linear elastic perfectly 
plastic material behavior, i.e. with no strain hardening, being this assumption the most critical situation for 
the steel. Besides, as an initial condition for the nonlinear elasto-plastic buckling simulation, it is necessary 
that the plate has an imperfect geometric configuration. This initial imperfect geometry is obtained from the 
first elastic buckling mode with maximum lateral deflection defined as b/2000, being b the plate width [12]. 

A computational model based on the eigenvalue approach was employed to the first elastic buckling 
mode determination. More detailed information about the elastic buckling computational model, as well as 
about the elasto-plastic buckling computational model can be encountered in reference [13]. 

3.2. Verification and validation of computational model  

A verification and validation of the elasto-plastic buckling computational model were performed 
considering a plate with longitudinal and transversal stiffeners, called SP1 in reference [14]. Fig. 1 shows the 
geometric configuration of this simply supported steel plate, being a = 1.16 m, b = 0.96 m, tp = 0.01 m, c1 = 
0.28 m, c2 = 0.32 m, a1 = 0,1 m, b1 = 0.06 m, hs = 0.05 m and ts = 0.005 m. Moreover the mechanical 
properties of the steel are σy = 218 MPa, E = 180 GPa and ν = 0.3. 

Reference [14] presents experimental and numerical results for the ultimate buckling load of 
Pu = 983.00 kN and Pu = 1036.20 kN, respectively, while in the present work a value of Pu = 1075.55 kN was 
numerically obtained. An error of 9.41% and a difference of 3.79% were found when our numerical solution 
is compared respectively with experimental and numerical results of [14], validating and verifying the 
computational model used. 

4. CONSTRUCTAL DESIGN METHOD 

The Constructal Theory is based on a physics principle, which is the constructal law: “For a finite-size 
flow system to persist in time (to survive) its configuration must evolve freely in such a way that it provides 
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an easier access to the currents that flow through it” [15,16]. The Constructal Law requests for configurations 
with successively smaller global flow resistances in time. Resistances (imperfection) cannot be eliminated. 
They can be matched neighbor to neighbor, and distributed so that their global effect is minimal, and the 
whole basin is the least imperfect that it can be [17]. 

 
Fig. 1 – Steel plate with longitudinal and transversal stiffeners. 

In turn, the Constructal Design method allows the use of the Constructal Law to improve engineering 
performances, seeking better strategies for generating the system geometry. Therefore, it guides the designer 
(in time) toward flow architectures that have greater global performance for the specific flow access 
conditions (fluid flow, heat flow, flow of stresses, etc.) pursuing the optimal distribution of imperfections 
[15, 16]. The proposal of the present work is to treat the mechanic of materials as the flow configurations are 
treated in fluid mechanics or heat transfer: mechanical structures are networks through which stresses flow 
from components to their neighbors [17]. 

It is well known in structural engineering that concentrations of maximum stresses are not good for 
mechanical performance. The best use of a mechanical resistant material is reached when the limit stresses 
are distributed uniformly through the available material, being this design principle in agreement with the 
principle of the optimal distribution of imperfections [13, 17].  

Therefore, aiming to apply the Constructal Design method for the evaluation of the geometry influence 
in the elasto-plastic buckling of a stiffened plate, a reference plate without stiffeners (Fig. 2a) was adopted. 
The total material volume of the reference plate is a constraint, being kept constant in all studied cases. To 
transform part of the total volume in stiffeners, it was defined the volume fraction (φ) parameter: 

φ = Vs

V
=

Nls ahsts( )+ Nts b − Nlsts( )hsts[ ]
abt

, (2)

where: Vs is the material volume of reference plate transformed in stiffeners, V is the total material volume, 
Nls and Nts are, respectively,  the number of stiffeners in longitudinal and transversal directions (see Fig. 2b), 
hs and ts are, respectively, the height and thickness of the stiffeners.  

The reference plate (Fig. 2a) with a = 2 000 mm, b = 1 000 mm, t = 14 mm and V = 28 × 106 mm3 was 
considered. Moreover volume fractions of φ = 0.1 and 0.4 were adopted for the stiffened plates (Fig. 2b), 
with combinations of Nls = 2, 3, 4 and 5 and Nts = 2, 3, 4 and 5 for several values of hs/ts. In addition, Fig. 2a 
presents a stiffened plate with Nls = 2 and Nts = 3, called P(2, 3). Steel AH-36 was adopted for these plates, 
having the follow mechanical properties: σy = 355 MPa, E = 210 Gpa, and ν = 0.3. 

It is important to highlight that as the plate dimensions a and b are kept constant, the tp value is 
dependent of the φ parameter with the purpose of guaranteeing no variation in the total material volume. 

5. RESULTS AND DISCUSSIONS 

Considering a simply supported condition, the reference plate was numerically simulated and the 
elasto-plastic buckling ultimate stress obtained is σuR = 187.61 MPa. This value was adopted to normalize the 
buckling ultimate stress value of stiffened plates. 
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Fig. 2 – Illustration of: a) reference plate; b) a stiffened plate with Nls = 2 and Nts = 3, called P(2, 3). 

For each studied φ value (φ = 0.1 and 0.4) and each stiffeners arrangement (P(2, 2), P(2, 3), P(2, 4), 
P(2, 5), P(3, 2), P(3, 3), P(3, 4), P(3, 5), P(4, 2), P(4, 3), P(4, 4), P(4, 5), P(5, 2), P(5, 3), P(5, 4) and P(5, 5)), 
the hs/ts variation allowed to identify an optimal plate geometry (hs/ts)o leading to a maximized normalized 
ultimate buckling stress (σuN)m. It is worth to emphasize that in each arrangement the hs/ts variation always 
conduct to the same mechanical behavior trend: from the lowest hs/ts value its increase promotes an 
augmentation of σuN until be reached (hs/ts)o and (σuN)m, thenceforth the σuN value decrease as hs/ts increase. In 
other words, the optimized geometric configuration was always obtained with an intermediate hs/ts ratio. This 
fact indicates that it is not possible to define the superior mechanical behavior without to perform a geometry 
evaluation. In this context, the geometric configuration variation proposed by the Constructal Design method 
allows to find the one that leads to the best performance, keeping constant the total material volume.       

Then, for φ = 0.1 and 0.4, with the values of (hs/ts)o and (σuN)m for each above mentioned arrangement it 
was possible to elaborate graphs relating (σuN)m and (hs/ts)o as function of Nts, respectively, in Figs. 3a and 3b. 

 
Fig. 3 – Influence of Nts, for φ = 0.1 and φ = 0.4, over: a) (σuN)m; b) (hs/ts)o. 

It is possible to note in Fig. 3a for φ = 0.1 a reduction in (σuN)m with the increase of Nts. Considering 
that longitudinal and transversal stiffeners have the same ratio hs/ts, the increase of Nts causes a reduction of 
material used in longitudinal stiffeners. As explained in [11], the longitudinal stiffeners are the main 
responsible to resist unixial buckling. So, when a little amount of material from reference plate is 
transformed in stiffeners, φ = 0.1 in in this case, as the Nts increases it is expected a diminution in ultimate 
buckling stress. In addition, until Nts = 4 the presence of stiffeners improved the mechanical capacity of 
plates in comparison with reference plate, i.e. for these cases it was obtained (σuN)m > 1. However, in Fig. 3a 
for φ = 0.4 there is a stabilization of (σuN)m around 1.8 indicating that due the greatest material amount used 
as stiffeners a superior mechanical behavior can be achieved.  

Regarding Fig. 3b, in a general way the increase of Nts promotes a decrease in (hs/ts)0 value, being this 
trend more evident for φ = 0.4.   
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After that, for each Nls value it was defined an optimized value for Nts, named (Nts)o. Hence, it was also 
defined the ultimate buckling stress twice maximized, (σuN)mm, and hs/ts twice optimized, (hs/ts)oo. These 
results are plotted in Fig. 4. 

 
Fig. 4 – Variation of (Nts)o, (hs/ts)oo and (σuN)mm as a Nls function: a) φ = 0.1; b)  φ = 0.4. 

Figures 4a and 4b indicate that (Nts)o = 2 and (Nts)o = 5 leads to superior structural performances 
independent of Nls, respectively, for φ = 0.1 and φ = 0.4. However, in Fig. 4b, when Nls = 2 the geometric 
configuration with (Nts)o = 2 also leads to an optimized geometry. Besides, it is possible to note in Fig. 4a 
that 2.10 ≥ (hs/ts)oo ≥ 4.04 for φ = 0.1, while in Fig. 4b one can observe that 7.59 ≥ (hs/ts)oo ≥ 9.41 for φ = 0.4. 
Therefore, there are specific values for hs/ts around which the best geometry is defined. An exception occurs 
for plate P(2, 2), that has (hs/ts)oo = 18.92 (Fig. 4b). Finally, regarding (σuN)mm, for φ = 0.1 (Fig. 4a) the 
increase of Nls causes a reduction in (σuN)mm, while for φ = 0.4  (Fig. 4b) it is possible to note a stabilization of 
the (σuN)mm value around 1.81, i.e. there is no significant influence of Nls in ultimate buckling stress. 

A last analysis was performed comparing the effect of volume fraction over the mechanical behavior of 
stiffened plates submitted to uniaxial buckling. To do so, the geometric configuration that maximizes the 
ultimate stress for each φ value was defined from Fig. 4, as can be seen in Tab. 1.  

Table 1 

Geometric configuration with (Nls)o, (Nts)oo, (hs/ts)ooo and (σuN)mmm 

φ Plate (Nls)o (Nts)oo (hs/ts)ooo (σuN)mmm 
0.1 P(2,2) 2 2 2.10 1.37 
0.4 P(4,5) 4 5 8.12 1.82 

The results of Tab. 1 indicate that between the two volume fractions value considered and among 
several geometries numerically simulated there is a geometry that conduct to the global best performance, 
being this the plate P(4, 5) with φ = 0.4, (hs/ts)ooo = 8.12 and (σuN)mmm = 1.82. It has an ultimate buckling stress 
82% and 33% superior than the reference plate and the best geometry for φ = 0.1 (P(2,2) with (hs/ts)ooo = 2.10 and 
(σuN)mmm = 1.37. The von Mises stress distributions for stiffened plates of Tab. 1 are depicted in Fig. 5. 

It is evident from Fig. 5 that the plate P(4,5) with φ = 0.4 (Fig. 5b) can promote a better distribution of the limit 
stress (in red color) than the plate P(2, 2) with φ = 0.1 (Fig. 5a). While the plate with the best global performance is 
almost all submitted to the limit stress (Fig. 5b), the other one has only few regions in this situation. This fact can be 
explained by the Constructal principle of optimal distribution of imperfection. Moreover, in Fig. 5 it is possible to 
prove that the transversal stiffeners are submitted to low stresses, as already mentioned. 

6. CONCLUSIONS 

In this work, numerical models for elastic and elasto-plastic buckling of plates allied to the Constructal 
Design and the Exhaustive Search were employed to perform a geometric optimization of stiffened plates. 

A reference plate with no stiffeners was used. From it and taking into account the volume fraction (φ) 
parameter, plates with longitudinal and transversal stiffeners were defined but always keeping constant the 
total material volume. Two φ values were studied, having as degrees of freedom the ratio between the height 
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and thickness of rectangular stiffeners (hs/ts) and the number of longitudinal (Nls) and transversal (Nts) 
stiffeners. The objective function was to maximize the ultimate buckling stress of stiffened plates. 

 
Fig. 5 – Von Mises stress distribution, in MPa: a) P(2, 2) with φ = 0.1; b) P(4,5) with φ = 0.4. 

The results indicate that there is an optimized geometry that leads to a global superior performance among the 
analysed cases. This best geometric configuration (P(4, 5) with φ = 0.4, (hs/ts)ooo = 8.12, (σuN)mmm = 1.82 and φ = 0.4) 
is 82% better than the reference plate and it is almost 367% better than the worst stiffened plate (P(2, 2) with hs/ts = 
74.92, σuN = 0.39 and φ = 0.4). The result for the worst geometry shows that the transformation of part of the 
reference plate material into stiffeners, keeping constant its volume, not always improve its ultimate buckling stress. 
Therefore, the geometry evaluation in structural engineering is an important research subject and must be done in 
order to achieve superior mechanical behaviours and avoid improper geometries.  

In addition, among the studied geometric configurations, the best shape was the one that better 
distributed the imperfections of the system, i.e. the one that have more regions submitted to the limit stress. 
This trend is in agreement with the constructal principle of optimal distribution of imperfection, proving the 
effectiveness of Constructal Design method.    

In future works it is intended to analyze the influence of other φ values, type of stiffeners as well as to 
study the biaxial buckling phenomenon. 
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