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Abstract. This paper presents a new method for determining the Arrhenius parameters of a reduced 
chemical mechanism such that it satisfies the second law of thermodynamics. The strategy is to 
approximate the progress of each reaction in the reduced mechanism from the species production 
rates of a detailed mechanism by using a linear least squares method. A series of non-linear least 
squares curve fittings are then carried out to find the optimal Arrhenius parameters for each reaction. 
At this step, the molar rates of production are written such that they comply with a theorem that 
provides the sufficient conditions for satisfying the second law of thermodynamics. This methodology was 
used to modify the Arrhenius parameters for the Westbrook and Dryer two-step mechanism for 
methane combustion. The optimized mechanism showed good agreement with the detailed mechanism for 
species mole fractions and production rates of most major species. The optimized mechanisms produced no 
violations of the second law of thermodynamics. 
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1. INTRODUCTION 

The differential entropy inequality, while not entirely unknown, is always ignored in simulating 
chemically reacting flows. In addition to satisfying the differential mass, momentum, and energy balances, 
simulations of chemically/biochemically reacting systems must satisfy the entropy inequality (the second law 
of thermodynamics). Common types of material behavior (Newton’s law of viscosity, Fourier’s law, Fick’s 
first law) satisfy the differential entropy inequality automatically, but common empirical descriptions of 
chemical/biochemical reactions do not.  

To simulate methane flame combustion, or any reacting fluid flow, it is necessary to incorporate a 
reaction mechanism that describes the incremental steps and associated rates leading from reactant species to 
products. Detailed mechanisms include all possible species and elementary reactions so as to provide 
accurate solutions in a wide range of simulation conditions. Unfortunately, there is a large computational 
cost associated with the complexity of detailed mechanisms. Therefore, reduced mechanisms are created for 
specific conditions where simplifying assumptions can be made to decrease the complexity of detailed 
mechanisms. It has been shown, however, that common reduced mechanisms produce violations of the 
differential entropy inequality (DEI)  
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a local form of the second law of thermodynamics [1]. Here T is the stress tensor, P the thermodynamic 
pressure, I the identity tensor, D the rate of deformation tensor, c the total molar density, R the gas law 
constant, T the temperature, Ns the number of species, j(n) the mass flux of species n relative to ν, ρ(n) the 
mass density of species n, Nr the number of reactions, μ(n) the chemical potential for species n on a molar 
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basis, and R(n)(r) the rate of production of moles of species n per unit volume by homogeneous chemical 
reaction r. ε is the energy flux corrected for the effects of mass transfer [2, p. 449]; d(n) is the driving force 
for mass transfer corrected for temperature gradients and pressure gradients [2, p. 450].  

A theorem was introduced in [1], which states that (1) is automatically satisfied for dilute gases if all 
reactions are reversible and conform to the law of mass action. Using this theorem, a least squares method 
was proposed to modify a reduced chemical kinetics model to automatically satisfy the DEI [1].  

This paper presents an improved method developed to determine rate parameters for reduced 
mechanisms such that they satisfy the DEI. This method builds on the least squares method that was used to 
create reduced kinetics models that satisfy the second law of thermodynamics [3]. The next section discusses 
the approach proposed herein followed by details of the method. The results section presents the new 
reduced kinetics model and examines whether it satisfy the DEI.  

2. APPROACH 

The basic idea of this method is to find the Arrhenius rate parameters for a reduced mechanism through 
a series of curve fittings. Starting with a data set of species production rates as a function of temperature and 
composition, the progresses of each reaction in the reduced mechanism are estimated using a linear least 
squares method. The progresses of reaction are then used in a series of non-linear least squares curve fittings 
to find the Arrhenius rate parameters for each reaction. The original data set can either come from 
experimentation or from a simulation using a detailed mechanism. For this work, a one-dimensional 
simulation was carried out using the GRI 3.0 mechanism. The method presented herein makes heavy use of 
least squares curve fitting techniques so the next section briefly presents a summary of useful relations.  

2.1. Least Squares Curve Fitting 

Least squares method seeks to minimize the sum of the squares of the difference between the 
dependent variable data and the function to be fit. This difference is termed the residual and is defined as  

, i = 1…Np.  (2)

Here ri is the residual at point i of a data set containing Np points. The associated independent and dependent 
coordinates are xi and yi, respectively. The equation to fit the data to is f which is a function of the 
independent variable and the solution vector ;  where Nη is the number of parameters. Written in 
vector form the residual becomes  

. (3)

For a linear function of the parameters ηj, the minimization of the square of the residual over all the 
data points yields [4]  

, (4)

where the elements of the Jacobian J  are  

 (5)

For a non-linear function of the parameters η j, an iterative method is used to calculate the parameters   
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where k is the index of the iterative process. The correction  is calculated by solving  
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. (7)

2.2. Finite Rate Chemistry 

In a reactive system with NS chemical species, any arbitrary reaction out of the Nr possibilities can be 
written as [5, pp. 554–94]  

, (8)

where M r( )  is the chemical symbol for species n and  and  are the stoichiometric coefficients for 

species n in reaction r as a reactant and a product, respectively. The progress of reaction r,  only considering 
the forward reaction and allowing for non-stoichiometric concentration exponents, is given by  
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where c n( ) is the molar concentration of species n. 

To evaluate the progress of reaction, the reaction-rate constant k r( ) is given by the empirical Arrhenius 

expression  
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where R̂  is the universal gas law constant and Ea, r( ) is the activation energy of reaction r. 

The net molar production rate of species n is found by simply summing the contributions from each reaction  
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2.3. Least Squares Method for Fitting Arrhenius Parameters 

The method presented herein distinguishes itself from other methods by first solving for the progress of 
each reaction, ω r( ) in the reduced mechanism before curve fitting the Arrhenius parameters. In most 

cases (11) is an over-constrained linear system, which can be represented in matrix form as  

. (12)

The size of ν  is NS × Nr, where NS and Nr are the number of species and reactions in the reduced 
mechanism, respectively. Since ν  is generally non-square,  must be obtained by solving an optimization 
problem as in (4). Rewriting in the form of (4) and solving for the reaction progress rates results in  

. (13)

The solution to (13) gives the progress of each reaction r at every temperature Ti of the one-
dimensional flow simulation.  

The next step is to perform a set of non-linear least squares curve fits to find the Arrhenius parameters 
for each reaction. The temperature is the independent variable and the progresses of each reaction just solved 
for are the dependent variable data. This leads to the residual from (2) being calculated as  
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, i = 1…Np. (14)

Since each progress of reaction is independent, a separate non-linear least squares curve fit must be 
performed for each reaction. Each curve fit will produce the Arrhenius parameters for one reaction.  

The form of the function in the residual is found by substituting the Arrhenius rate equation (10) into 
the progress of reaction equation (9)  

 (15)

To conform to the law of mass action the exponent q'(n)(r) is taken to be v'(n)(r), the reactant stoichiometric 
coefficient of species n in reaction r. The solution vector is composed of the Arrhenius parameters for 
reaction r  
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To summarize, the method consists of the following steps:  
1. A detailed mechanism simulation is run to generate a data set containing temperature, species 

concentration, and species production rate through a flame front.  

2. Progresses of reaction are approximated at each data point from the species production rates using 
linear least squares as in (13).  

3. The Arrhenius parameters are found for each reaction by performing a non-linear least squares curve 
fit of the approximated progresses of reaction.  

3. RESULTS 

The Arrhenius parameter fitting algorithm presented in section 2 was used to find optimized parameters 
for the reaction steps of the Westbrook and Dryer two-step mechanism [6]. The newly created mechanism will 
be called the optimized two-step mechanism. The values of the parameters are given in Table 1.  

Table 1 

Optimized two-step mechanism Arrhenius parameters 

Reaction Equation  A β E  
1 3.1623×1014  0.8308 2.3855×104 
2f  4.2094×106 0.1251 7.3969×103 
2b   1.4286×109 0.2851 1.7072×105 

Units are cm, mol, cal, s, and K.  

 

Table 2 gives a comparison of the flame speeds for the optimized two-step mechanism and the detailed 
GRI 3.0 mechanism [7]. These were all calculated using Cantera [8] for standard atmospheric conditions and 
a stoichiometric mixture of methane and air.  

Table 2 

Flame speed comparison of various mechanisms 

Mechanism  Flame Speed [cm/s] Error [%] 
GRI 3.0  38.05  — 

Optimized 2-step  28.43  25.28   
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Up to this point all of the discussion of the created mechanism has centered around the Cantera one-
dimensional flame simulations. Comparisons of all mechanisms when applied to the axisymmetric FLUENT 
model of Sandia flame A, including violations of the DEI, will be discussed in the following paragraphs. 

A numerical simulation of Sandia flame A using Fluent with the Westbrook and Dryer reduced kinetics 
model showed that the DEI is violated at 22,014 cells out of 167,523 cells [1].  These violations were due to 
the fourth term of the left-hand side of (1) becoming positive and exceeding the sum of the other three terms.  
This section will reassess the entropy violations of Sandia flame A using Fluent with the following kinetics 
models: GRI 3.0, Westbrook and Dryer, and the model proposed herein. 

Table 3 summarizes the violations of the DEI found for each chemical mechanism. The optimized two-
step mechanism performed exactly as it was intended, producing no violations of the DEI. The detailed GRI 
3.0 mechanism contained a small number of violating cells while the Westbrook and Dryer two-step 
mechanism contained the most, and largest magnitude, violating cells. The Westbrook and Dryer mechanism 
was expected to produce the greatest number of violations since it met none of the criteria of the theorem [1]. 

Table 3 

Violations of the DEI for various mechanisms 

Mechanism  Number of Cells Volume Fraction [%] Maximum Value 
GRI 3.0 3513 3.98×10–3  5.72×107 

Westbrook & Dryer 20653 3.62×10–2  1.40×109 
Optimized 2-step 0  0  — 

Figure 1 shows contours of violations of the DEI for the two violating mechanisms. For each of the 
mechanisms there is a channel, centrally located in the flame, where violations do not occur. Violations 
occur much more prevalently where reactions are occurring, or in other words, where the global reaction has 
not moved completely to product species. This could also support the theory that violations of the GRI 3.0 
mechanism are due to the inaccurate rate parameters for the minor species reactions. However, more analysis 
is required to verify this claim. 

 

Fig. 1 — Profile of entropy violations for two mechanisms: GRI 3.0 (top) and Westbrook and Dryer two-step (bottom). 
The optimized two-step mechanism had no violations. 
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4. CONCLUSIONS 

A new method for determining the Arrhenius parameters of a reduced chemical mechanism was 
developed herein. This method seeks to find an optimal set of parameters for a specific operating condition. 
The basic strategy is to approximate the progress of each reaction in a reduced mechanism from the species 
production rates of a detailed mechanism. A series of non-linear least squares curve fittings are then carried 
out to find the optimal Arrhenius parameters for each reaction. This process was used to find parameters for 
the reaction steps of the Westbrook and Dryer two-step mechanism. The optimized mechanism showed good 
agreement with the detailed mechanism for species mole fractions and production rates of most major 
species. The optimized mechanisms produced no violations of the DEI.  
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