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Abstract. Let A  be a Banach algebra. In this paper for a Banach algebra A which is also an  
-bimodule A we introduce the notions of module ( , )φ ϕ -biprojectivity and module ( , )φ ϕ -biflatness 

of A, where ( ) {0}ϕ ∈Δ ∪A and Aφ ∈Ω , the space consisting of all linear maps : Aφ → A such that 
( ) ( ) ( ),ab a bφ φ φ= ( . ) ( ) ( )a aφ α ϕ α φ= ( , , ).a b A α∈ ∈A We investigate relations between module 

( , )φ ϕ -biprojectivity and ϕ φ -biprojectivity of A and we show that under some conditions A  is 

module ( , )φ ϕ -biflat if and only if A  is module ( , )φ ϕ -amenable. Finally, for an inverse semigroup 

S with the set of idempotents E, we show that the semigroup algebra 1( ),l S  as an 1( )l E -module, is 
module ( , )φ ϕ -biflat if and only if S  is amenable. 

Key words: Banach -bimodule,A module ( , )φ ϕ -biprojectivity, module ( , )φ ϕ -biflatness, module 
( , )φ ϕ -amenability. 

1. INTRODUCTION AND PRELIMINARIES 

The notion of Biprojective Banach algebras were introduced by A. Ya. Helemskii in [7]. Later he has 
studied biprojectivity and biflatness of the Banach algebras in more details in Chapters IV and VII of [8].  

Let A  be a Banach algebra and : ;A A A A a b abω ⊗ → ⊗ →  be the canonical morphism. A  is called 
biprojective if Aω  has a bounded right inverse which is an A -bimodule homomorphism. A Banach algebra 

A  is said to be biflat if the adjoint * * *: ( )A A A Aω → ⊗  has a bounded left inverse which is an A -bimodule 
homomorphism. The concepts of ϕ -biflatness and ϕ -biprojectivity for a Banach algebra A , where 

( )Aϕ∈Δ ,  the character space of A , were introduced and studied in [15].  
Let A  be a Banach algebra and let ( )Aϕ∈Δ . Then A  is called ϕ -biprojective if there exists a 

bounded A -bimodule homomorphism : A A Aρ → ⊗  such that ( ) ( )A a aϕ ω ρ ϕ= ( )a A∈ . A Banach 

algebra A  is called ϕ -biflat if there exists a bounded A -bimodule homomorphism : ( )**A A A Aρ → ⊗   

such that ** ( ) ( )A a aϕ ω ρ ϕ= ( )a A∈ , where : **Aϕ →  denotes the extension of ϕ . 
Let A  and A  be Banach algebras such that A  be a Banach A -bimodule with compatible actions 

.( ) ( . ) ,ab a bα α= ( ). ( . )ab a bα α= ( , , ).a b A α∈ ∈A  Let X  be a Banach A -bimodule and a Banach  
A -bimodule with compatible left actions defined by  

                   .( . ) ( . ). ,a x a xα α=  .( . ) ( . ). ,a x a xα α=  ( . ). .( . )x a x aα α=   ( , , ),a A x Xα∈ ∈ ∈A                        (1.1) 

and similar for the right or two-sided actions. Then we say that X  is a Banach A -A -module. A Banach  
A -A -module X  is called commutative A -A -module, if . .x xα α=  ( , ).x Xα ∈ ∈A   



522 Mahmood LASHKARIZADEH BAMI, Hamid SADEGHI 2  

 

If X   is a (commutative) Banach A -A -module, then so is *X , whenever the actions of A  and A  on 
*X  define by . , , . ,f x f xα α=  . , , .a f x f x a= ( , , , *),a A x X f Xα∈ ∈ ∈ ∈A   and similarly for the 

right actions. 
Let X   and Y  be two A -A -modules, then a bounded linear operator :h X Y→  is called  

A -A -module homomorphism if ( ) ( ) ( )h x y h x h y± = ±  and 

( . ) . ( ),h x h Xα α=  ( . ) ( ). ,h x h xα α=  ( . ) . ( ),h a x a h x=  ( . ) ( ). ,h x a h x a=  

for , ,x y X a A∈ ∈  and .α ∈A   

Let A A⊗  be the projective tensor product of A  and A  which is a Banach A -bimodule and a Banach 
A -bimodule by the following actions: .( ) ( . ) ,a b a bα α⊗ = ⊗ .( ) ( )c a b ca b⊗ = ⊗ ( , , , ),a b c Aα ∈ ∈A     

similarly for the right actions. Let A AI
⊗

 be the closed ideal of A A⊗  generated by elements of the form  

                                  { . . | , , }.a b a b a b Aα α α⊗ − ⊗ ∈ ∈A                                                     (1.2) 

Let AJ  be the closed ideal of A  generated by 

                                 ( ) {( . ) ( . ) | , , }.A A AI a b a b a b Aω α α α
⊗

= − ∈ ∈A                                                (1.3) 

Then, the module projective tensor product ,A A⊗A  which is ( ) / A AA A I
⊗

⊗  by [14], and the quotient Banach 

algebra / AA J  are both Banach A -bimodules and Banach A -bimodules. Also, / AA J  is A -A -module with 
compatible actions when A  acts on / AA J  canonically. 

Define , / )A AA A A Jω ∈ ⊗AL(  by ( )A AA Aa b I ab Jω
⊗

⊗ + = +  and extend by linearity and continuity. 

Obviously, Aω  is A -A -bimodule map. Moreover, *Aω , the first adjoints of Aω  is also A -A -module 
homomorphism. 

Let A  be a Banach A -bimodule.  A  is called A -module biprojective if Aω  has a bounded right 
inverse which is an / AA J -A -module homomorphism, and A  is called A -module biflat if *Aω  has a 
bounded left inverse which is an / AA J -A -module homomorphism. Module biprojectivity and module 
biflatness of Banach algebras were introduced and investigated by Bodaghi and Amini in [4]. For every 
inverse semigroup S  with subsemigroup E  of idempotents, they showed that 1( )l S  is module biprojective, 
as an 1( )l E -module, if and only if an appropriate group homomorphic image SG  of S  is finite. They also 
proved that module biflatness of 1( )l S  is equivalent to the amenability of the underlying semigroup S . 

Let A  be a Banach A -bimodule,  ( ) {0}ϕ∈Δ ∪A  and Aφ ∈Ω , the space consisting of all linear maps 
: Aφ →A  such that ( ) ( ) ( ),ab a bφ φ φ= ( . ) ( ) ( )a aφ α ϕ α φ= ( , , ).a b A α∈ ∈A Our aim in this paper is to 

introduce and study the notions of module ( , )φ ϕ -biprojectivity and module ( , )φ ϕ - biflatness of A . We 
briefly summarize the results in this paper. 

In section 2 for a Banach A -bimodule A  we investigate relation between module ( , )φ ϕ - biprojectivity of 
A  and ϕ φ -biprojectivity of / AA J . We also prove that if / AA J has an identity, then ϕ φ -biprojectivity 
of A  implies module ( , )φ ϕ -biprojectivity of A .  

In section 3 we investigate relation between module ( , )φ ϕ -amenability of A  and module ( , )φ ϕ -biflatness 
of A . Indeed we show that if A  has a bounded approximate identity and A  act on A  trivially from the left, 
then A  is module ( , )φ ϕ -biflat if and only if A  is module ( , )φ ϕ -amenable. Finally, for an inverse 
semigroup S  with the set of idempotents E , we give some conditions under which the semigroup algebra 

1( )l S , as an 1( )l E -module, is module ( , )φ ϕ -biflat if and only if S  is amenable.   
Note that, in this paper `Banach algebra' means complex associative Banach algebra, and in general 

Banach algebras are not assumed to have any unit element, unless they are otherwise specified explicitly. 
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2. MODULE ( , )φ ϕ -BIPROJECTIVITY OF BANACH ALGEBRAS 

We commence this section with the following definition: 
 
Definition 2.1. We say the Banach algebra A  acts trivially on A  from the left (right) if there is a 

multiplicative linear functional f  on A  such that . ( )a f aα α=  (resp. . ( )a f aα α= )  for all α ∈A  and .a A∈   

Let Aφ ∈Ω . Clearly (( . ) ( . )) 0a b a bφ α α− = ( , , ).a b Aα ∈ ∈A   so 0φ =  on AJ  and : / AA Jφ →A  
given by ( ) ( )Aa J aφ φ+ =  is well defined. Hence / AA Jφ ∈Ω . 

 
Definition 2.2. Let  ( ) {0}ϕ∈Δ ∪A  and Aφ ∈Ω . A Banach A -bimodule A  is called module ( , )φ ϕ -

biprojective if there exists / AA J -A -module homomorphism : / ( ) /A A AA J A A Iρ
⊗

→ ⊗ such that 

( ) ( )A A Aa J a Jϕ φ ω ρ ϕ φ+ = +  ( )a A∈ . 
The proof of the following proposition is straightforward, so we omit its proof. 
 
PROPOSITION 2.3. Let A  be a Banach A -bimodule,  ( ) {0}ϕ∈Δ ∪A  and Aφ ∈Ω . If A  is  

A -module biprojective, then A  is module ( , )φ ϕ -biprojective. 
For the proof of the following result we refer to Lemma 3.13 of [2]. 
 
LEMMA 2.4. Let A acts on A  trivially from the left or right and / AA J  has a right bounded 

approximate identity, then for each α ∈A   and a A∈  we have ( ) . Af a a Jα α− ∈ . 
We recall the following remark from [4] for proof of the next results: 
 
Remark 2.5. Let A AI

⊗
 and AJ  be the closed ideals defined in (1.2) and (1.3), respectively. Suppose 

that A  has a bounded approximate identity and A  acts on A  trivially from the left. Then ( ) / A AA A I
⊗

⊗  is 
an / AA J -bimodule with the following actions given by 

                       ( .( .() ) ) ,A A A A A A Aa J c b I a c b I ac b I
⊗ ⊗ ⊗

+ ⊗ + ⊗ + = ⊗ +ú                                   (2.1) 
and 

                         ). ) ). ,( ( (AA A A A A Ac b I a J c b aI c ba I
⊗ ⊗ ⊗

⊗ + + ⊗ + = ⊗ +ú                                  (2.2) 

for , ,a b c A∈  andα ∈A . 
 

PROPOSITION 2.6. Let A  be Banach algebra with a bounded approximate identity and A  acts on A  
trivially from the left. Let : ( ) / / /A A AA AA A I A J A J

⊗
Φ ⊗ → ⊗   be defined by 

( )1 2 1 2( ) ( ) ( )A A AA Aa a I a J a J
⊗

Φ ⊗ + = + ⊗ +   1 2( , ).a a A∈   

Then AΦ  is a bijective / AA J -A -module homomorphism. 
Proof. Let : / AA A Jπ →   is the projection map, then the map 

1 : ( ) / ker( ) / / ,A AF A A A J A Jπ π⊗ ⊗ → ⊗  1 2 21( ) ( ),ker( ) A Aa a a J a Jπ π⊗ + ⊗ → + +⊗   

is well defined. By Lemma 2.4, for every 1 2,a a A∈   and α ∈A,  we have 

1 2 1 2 1 2 1 2)( )( . . .( ) ( ) ( ) ( )A A A Aa a a a a J a J a J a Jπ π α α α α⊗ ⊗ − ⊗ = + ⊗ + − + ⊗ +  
                                                         1 2 1 2( ( ) ( ( ( )) ) ) )(A A A Af a J a J a J f a Jα α= + ⊗ + − + ⊗ +  

                                                         1 2 1 2) ) ) )( )( ( ( )( (A A A Af a J a J f a J a Jα α= + ⊗ + − + ⊗ + 0.=  
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Thus / ker( ).A AI π π
⊗

⊗   Hence the map 

2 ) / ( ) / ker(: ( ),A AA A I A AF π π
⊗

⊗ → ⊗ ⊗  1 2 1 2 ker( ),A Aa a I a a π π
⊗

⊗ + ⊗ + ⊗  

is also well defined. So 1 2ΦA F F=  is well defined. Since π π⊗  is bounded, for every 1 2, ,a a A∈  it follows 
that 
              ( )1 1 2 1 2 1 2ker( ) ( ( () ) )A AF a a a J a J a aπ π π π⊗ + ⊗ = + ⊗ + = ⊗ ⊗   

                                                         ( ) 1 2kerinf ( ( ))x a a xπ π π π π π∈ ⊗= ⊗ ⊗ + ⊗ 1 2 ker( ) ,k a a π π≤ + ⊗′ ⊗     

where 0k ′ >  is bound for .π π⊗  Thus 1F  is bounded. Also since ker( ),A AI π π
⊗

⊆ ⊗ it follows that 2F  is 

bounded. So ΦA  is bounded. We show that ΦA  is a bijective map. 
Clearly, ΦA  is surjective. Let ( )ie  be a bounded approximate identity for A  with bound 0.m >   By (2.1) and 
(2.2), for every 1 2, ,a a A∈  we have 

                 1 2 1 2lim i iA A A Ai
a a I a e e a I

⊗ ⊗
⊗ + = ⊗ + ( )1 2) ( ) )lim ( . .(A i i AA Ai

a J e e I a J
⊗

= + ⊗ + +                                         

                                            1 2lim i i A AA Ai
k e e I a J a J

⊗
≤ ⊗ + + + 1 2lim ( ) ( )i i A Ai

k e e a J a J≤ ⊗ + ⊗ +        

                                             2
1 2)( ( ) .A Akm a J a J≤ + ⊗ +  

This shows that ΦA  is injective and so ΦA  is a bijective map. Obviously ΦA  is an A -bimodule 

homomorphism. Again by using (2.1) and (2.2), and the facts that / /A AA J A J⊗  is / AA J -homomorphism, 
it is easy to see that ΦA  is / AA J -bimodule map. Therefore ΦA  is a bijective / AA J -A -module 
homomorphism.  

Let ΦA  be as in above Proposition. If we denote the inverse of ΦA  by 1ΦA
− , then it is easy to see that 

1ΦA
−  is a / AA J -A -module homomorphism. 

 
PROPOSITION 2.7. Let A  be a Banach A -bimodule with a bounded approximate identity, where A  

act on A   trivially from the left. Let ϕ∈Δ ∪(A) {0}  and Ω .Aφ ∈  If A  is module ( , )φ ϕ -biprojective, then 

/ AA J  is ϕ φ -biprojective. 
Proof. Let A  be module ( , )φ ϕ -biprojective. Then there exists / AA J -A -module homomorphism 

: / ( ) /A A AA J A A Iρ
⊗

→ ⊗  such that ( .) ( )A A Aa J a Jϕ φ ω ρ ϕ φ+ = + Let ΦA  be as in Proposition 2.6. 

A direct verication shows that the equalities / Φ
AA J A Aω ω=  are valid. Define : / ( / / )A A AA J A J A Jρ → ⊗   

by ( ) Φ ( )A A Aa J a Jρ ρ+ = +  ( ).a A∈  Since A  act on A  trivially from the left, we may take 0α ∈A  such 
that 0( 1.)f α =  Hence for every a A∈  and ,λ∈C  we have 

            ( ) ( )0 0 0) ( ) ( ) ( ) (. )( . .A A A A Aa J a J a J a J a Jρ λ ρ λ α λα ρ λρ α λρ+ = + = + = + = +                     (2.3) 

That is ρ  is -linear. Then ρ  is a / AA J -bimodule homomorphism and for every ,a A∈  we have 

( )/ /( Φ)
A AA J A A J A Aa J a Jϕ φ ω ρ ϕ φ ω ρ+ = + ( )A Aa Jϕ φ ω ρ= + ( ).Aa Jϕ φ= +  

Consequently / AA J  is ϕ φ -biprojective.  
 

PROPOSITION 2.8. Let A  be a Banach A -bimodule, where A  act on A  trivially from the left and let 
/ AA J  has an identity. Then the following statements are valid: 
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(i) If / AA J  is ϕ φ -biprojective, then A  is module ( , )φ ϕ -biprojective; 
(ii) If A  is ϕ φ -biprojective, then A  is module ( , )φ ϕ -biprojective. 
Proof. Let Ae J+  be the identity of / AA J . (i) Suppose that / AA J  isϕ φ -biprojective. Then there 

exists / AA J -module homomorphism : / ( / / )A A AA J A J A Jρ → ⊗  such that 

/ ) )( (
AA J A Aa J a Jϕ φ ω ρ ϕ φ+ = +   ( ).a A∈   

Define : / ( ) /A A AA J A A Iρ
⊗

→ ⊗ by 1) ( ( )( .)ΦA A A Aa J e J a Jρ ρ−+ = + + ( ).a A∈ For every α ∈A  
and ,a A∈  we have 

( ) 1.( Φ .( .) ( ) )A A A Aa J e J a Jρ α ρ α−+ = + + 1( ) ( )Φ ( .)A A Af e J a Jα ρ−= + + . ( ,)Aa Jα ρ= +  

and similarly, ( ))( . . .( )A Aa J a Jρρ α α+ = +  Since 1ΦA
−  and ρ  are / AA J -module map for every , ' ,a a A∈  

we obtain that 

              ( ) 1)( ' .( Φ ( . ') ) ( )A A A A Aa J a J e J a a Jρ ρ−+ + = + + ( )1 ) ( ) (Φ ( . ' . )A A A Ae J a J a Jρ−= + + +   

                                                 ( )1) ) ( )( ' .Φ ( .A A A Aa J e J a Jρ−= + + + ' .( ) ( ),A Aa J a Jρ= + +    

and similarly, ( )( . ') ( ) ( ) ( ). .'A A A Aa J a J a J a Jρρ + + = + +  So ρ  is a / AA J -A -module homomorphism. 
Now for every ,a A∈  we have 

        ( )1) ( )Φ .( )(A AA A A Aa J e J a Jφϕ φ ρ ωω ϕ ρ−+ = + + ( )( )1Φ ( ) ( )A A A Ae J a Jϕ φ ω ρ−= + +    

            1( Φ ) ( ) ( )A A A Ae J a Jϕ φ ω ρ φϕ−= + + / )( ()
AA J A Ae J a Jϕ φ ω ρ ϕ φ= + + ( ).Aa Jϕ φ= +    

Therefore A  is module ( , )φ ϕ -biprojective. 

(ii) Suppose that A  is ϕ φ -biprojective and : ( )A A Aρ → ⊗  is a A -module homomorphism such that 

( ) ( )A a aϕ φ ω ρ ϕ φ= ( ).a A∈ Define : / ) /(A A AA J A A Iρ
⊗

⊗→ by ( ( ( )) ) ( ).A AA Aa J e I a Jρ ρ
⊗

+ = + +

( ).a A∈ A similar argument as in (i) shows that ρ  is a / AA J -A -module homomorphism. Hence for every 
,a A∈ we have 

         ( )( ( ( )) ) (. )A AA AA Aa J e I a Jρ ωϕ φ ω ρ ϕ ρ
⊗

+ = + + ( )( )A A Aa Iϕ ρ ω ρ
⊗

= +      

                                            ( )( ( ))A Aa Jϕ ρ ω ρ= + ( )A aϕ φ ω ρ= ( )aϕ φ= ( ).Aa Jϕ ρ= +    

This means that A  is module ( , )φ ϕ -biprojective.  

3. MODULE ( , )φ ϕ -AMENABILITY AND MODULE ( , )φ ϕ -BIFLATNESS  
OF BANACH ALGEBRAS 

Let ( )Aϕ∈Δ . Then ϕ  has a unique extension ( **)Aϕ∈Δ   which is denote by ( ) ( )F Fϕ ϕ=  for every 
**F A∈ . 

 
Definition 3.1. Let { }( ) 0Aϕ∈Δ ∪  and ΩAφ ∈ . A Banach algebra A  is called module ( , )φ ϕ -biflat if 

there exists  / AA J -A -module homomorphism ( )**
: / ( ) /AA A AA J A A Iρ

⊗
→ ⊗  such that 

**
) )( (A A AA a J a Jϕ φφ ω ρ ϕ+ = +   ( ).a A∈  

We recall following definition from [5]. 
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Definition 3.2. Let A  be a Banach A -bimodule, { }( ) 0Aϕ∈Δ ∪  and ΩAφ ∈ . A bounded linear 
functional *:m A →C   is called a module ( , )φ ϕ -mean on *A  if ( . ) ( ) ( ),m f a a m fϕ φ=  

( . ) ( ) ( )m f m fα ϕ α=  and ( ) 1m ϕ φ =   for all *,f A a A∈ ∈  and .α ∈A   A  is called module ( , )φ ϕ -amenable 
if there exists a module ( , )φ ϕ mean on *.A  

  
Remark 3.3. Let X  be a Banach A -A -module. A bounded map :D A X→ is called an A -module 

derivation if 

( ) ( ) ( ),D a b D a D b± = ±  ( ) ( ). . ( ),D ab D a b a D b= + ( . ) . ( ),D a D aα α=   ( . ) ( ).D a D aα α=              (3.1) 

for all ,a b A∈  and .α ∈A  Although D  in general is not linear, but still its boundedness implies its norm 
continuity. A A -module derivation D  is said to be inner if there exists x X∈   such that ( ) . . .D a a x x a= −  
( ).a A∈  (see [1]). 
 

PROPOSITION 3.4. Let A  be a Banach A -bimodule, and let { }( ) 0Aϕ∈Δ ∪  and ΩAφ ∈ .  Then A  is 

module ( , )φ ϕ -amenable if and only if / AA J  is module ( , )φ ϕ -amenable. 
Proof. Suppose that / AA J  is ( , )φ ϕ -module amenable. Let X  be a Banach A -A -module such that 

. ( ).a x a xφ=  and . . ( )x x xα α ϕ α= =  for every ,a A x X∈ ∈ and .α ∈A   Let *:D A X→  be a bounded 
module derivation. Using (1.1) and commutativity of ,X  we have 0A AJ X XJ= =  and so X  is a Banach 

/ AA J -A -module by following actions ( . . ,)Aa J x a x+ = ).( .Ax a J x a+ = ( , ).a A x X∈ ∈  Also using (3.1) we 
see that D  vanishes on AJ . Therefore, D  induces a bounded module derivation *: ./ AD A J X→  Since X  
is a Banach / AA J -A -module such that )( . ( ).A Aa J x a J xφ+ = +  , ),(a A x X∈ ∈   . . ( )x x xα α ϕ α= =  
( )α ∈A  and / AA J  is module ( , )φ ϕ -amenable, by Theorem 2.1 of [5], we conclude that D  is inner. Hence 
D  is inner. Again Theorem 2.1 of [5], implies that A  is module ( , )φ ϕ -amenable. Similarly, we can proof 
the other direction.  
 

PROPOSITION 3.5. Let A  be a Banach A -bimodule with a bounded approximate identity, and let 
{ }( ) 0Aϕ∈Δ ∪  and ΩAφ ∈ .  Let A  act on A  trivially from the left. If A  is module ( , )φ ϕ -biflat, then 

/ AA J  is ϕ φ -biflat.  
Proof. Assume that A  is module ( , )φ ϕ -biflat. Thus there exists a / AA J -A -module homomorphism 

( )**
: / /A A A AA J A A Iρ

⊗
⊗→  such that 

**
) )( (A A AA a J a Jϕ φφ ω ρ ϕ+ = +  ( ).a A∈   Let ΦA  be as in 

Proposition 2.6. Define ( )**
: / / /A A AA J A J A Jρ ⊗→   by **ΦA Aρρ = . By a similar argument as in (2.3), 

we may show that ρ  is -linear. Let ( )**
/ A AG A A I

⊗
∈ ⊗ . Take the net ( )( /) A Ax A A Iα ⊗

⊗⊂  such that 

x Gα →  in *w -topology. For every α  let 
1

,i i A A
i

x a b Iα α
α ⊗

∞

=
= ⊗ +∑ for some sequences ( )i i

aα  and ( )i i
bα  in 

A  with 
1

.i i
i

a bα α
∞

=
< ∞∑  Then for every ( )* ,/ Af A J∈   we have 

   
** *

( ), ,( )A AGf Gfω ω=
*

1
lim ( ),A i i A A

i
f a b Iα α

α
ω

⊗

∞

=
= ⊗ +∑

1
lim , i i A

i
f a b Jα α

α

∞

=
= +∑       

                       *
/

1
lim ( ) ( ), ()

AA J i A i A
i

f a J b Jα α
α

ω
∞

=
= + ⊗ +∑  * *

/
1

lim Φ ( ),
AA A J i i A A

i
f a b Iα α

α
ω

∞

=
⊗

= ⊗ +∑      

                      * *
/ ( )Φ ,

AA A J Gfω= ** **
/, Φ .( )

AA J A Gf ω=      
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That is
** ** **

/( ) ( )Φ
AA A J AG Gω ω=   **/ )( ( ).A AG A A I

⊗
⊗∈     So 

** ** **
/ Φ

AA A J Aωω =    and 

** ** **
/ /)( Φ ( )

A AA J A A J A AAa J a Jϕ φ ω ρ ϕ φ ω ρ+ = + = 
**

( )A AA a Jϕ φ ω ρ + ( ),Aa Jϕ φ= +  

for all .a A∈ Consequently / AA J  is ϕ φ -biflat.  
 

THEOREM 3.6. Let A  be a Banach A -bimodule with a bounded approximate identity, where A  act 
on A  trivially from the left. Let { }( ) 0Aϕ∈Δ ∪  and ΩAφ∈ . Then A  is module ( , )φ ϕ -biflat if and only if A  
is module  ( , )φ ϕ -amenable. 

Proof. Suppose that A  is module ( , )φ ϕ -biflat. By Proposition 3.5,   / AA J  is ϕ φ -biflat. So 
Theorem 3.1 of [16],  implies that / AA J  is ϕ φ -amenable. Let *: / AD A J X→  be an A -module 
derivation for some / AA J -A -bimodule X  such that )( ). (A Aa J x a Jφ+ = +  and . . ( ) .x x xα α ϕ α= =  We 
may assume X  as a / AA J -bimodule with the following actions 

)• ( (. ,)A Ax a J x a J+ = +  ( • () )A Aa J x a J xϕ φ+ = +    , ).(a A x X∈ ∈  

Since A  act on A  trivially from the left, we may take 0α ∈A  such that ( )0 1.f α =  Hence for every a A∈  
and ,λ∈C  we have 0 0 0( )) ( ) ( )( .) ( ). .(A A A A AD a J D a J D a J D a J D a Jλ λα λα λ α λ+ = + = + = + = + Thus 
D  is linear map. Now Theorem 1.1 of [9], yield that D  is inner and so by Theorem 2.1 of [5],  / AA J  is 
module ( , )φ ϕ -amenable. Therefore A  is module ( , )φ ϕ -module amenable by Proposition 3.4. 

     Conversely, assume that A  is module ( , )φ ϕ -amenable. We consider the Banach A -bimodule A A⊗  
with module actions ( ). ' '.( ) ( ')a b a a a b a a bϕ φ⊗ = ⊗ = ⊗ ', , ).(a a b A∈  A similar argument as in the proof 

of Theorem 2.10 of [5], shows that there exists a **(( ) / )A AAM A I
⊗

∈ ⊗  such that 

                      . . ( )( ) ,a M M a a Mϕ φ= =   
**

( )( ) 1Mω ϕ φ =   ( ).a A∈                                             (3.2) 

Define **: / (( )) /AA A AA J A A Iρ
⊗

⊗→  by ) (( )A AA J a Ma Jρ ϕ φ+ = + ( ).a A∈  By (2.1), (2.2) and (3.2), 

one can easily show that ρ  is a / AA J -A -module homomorphism. Thus for every ,a A∈  we have 

( )** **
( ) )(A AA A Aa J J Maϕ φ ω ρ ϕ φ ω ϕ φ+ = +

**
( ) (( ) )A Aa MJ ϕφ φω ϕ= +                                          

**
) )( )( (AA Ma Jϕ φ ω ϕ φ= + ( .)Aa Jϕ φ= +    

Therefore A is module ( , )φ ϕ -biflat. 
 

Remark 3.7. A inverse semigroup is a discrete semigroup S  such that for each s S∈ , there is a unique 
element *s S∈  with *ss s s= and * * *.s ss s= An element  e S∈  is called an idempotent if 2 * .e e e= =   The set 
of idempotent elements of S  is denoted by E .  

Let S  be an inverse semigroup with the set of idempotents E . We let 1( )l E  acts on 1( )l S  by 
multiplication from the right and trivially from the left, that is: . ,e s sδ δ δ= . *s e se s eδ δ δ δ δ= = , ).(e E s S∈ ∈      
By these actions,  1( )l S  becomes a Banach 1( )l E -module. In this case, ( ) { }1 | , , .set stl SJ e E s t Sδ δ= − ∈ ∈  

We consider an equivalence relation on S  as follows ( )1s t l Ss t Jδ δ≈ ⇔ − ∈  ( , ).s t S∈  For inverse 

semigroup S , the quotient semigroup /S ≈  is discrete group and so 1( / )l S ≈  has an identity (see [3] and 
[11]). Indeed,  /S ≈  is homomorphic to the maximal group homomorphic image SG  of S  (see [10] and 
[12]). It is also shown in Theorem 3.3 of [13], that 1

1 1 1
( )( ) / ( / ) ,)( sl sl s J l S l G≅ ≈ =   is a commutative 1( )l E  
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bimodule with the following actions: [ ] [ ] [ ] [ ]. , .e es s s seδ δ δ δ δ δ= = , ).(s S e E∈ ∈ where [ ]s  denotes the 

equivalence class of s  in SG . Duncan and Namioka in Theorem 16 of [6], proved that for any inverse 
semigroup S , 1( )l S   has a bounded approximate identity if and only if E  satifies  condition kD  for some k  
(Let .k∈N  E  satifies  conditions kD  if for 1 2 1, , , kf f f E+… ∈  there exist e E∈  and ,i j such that 
1 1, ,i i j ji j k f e f f e f≤ ≤ ≤ + = = . 
 

THEOREM 3.8. Let S  be an inverse semigroup with the set of idempotents E . Consider 1( )l S  as a 
Banach module over 1( )l E  with the trivial left actions and natural right action. Let { }1( ( )) 0l Eϕ∈Δ ∪  
and 1( ) .Ωl Sφ ∈  Then the following statements are valid: 

(i) If E satifies condition kD for some k , then S  is amenable if and only if 1( )l S  is module ( , )φ ϕ -
biflat; 

(ii) S is amenable if and only if 1( )Sl G  is module ( , )φ ϕ -biflat. 
Proof. (i) Let E  satifies  condition kD  for some k . Since 1( )l S  has a bounded approximate identity 

by Theorem 16 of [6] and 1( )l E  act on 1( )l S  trivially from the left, result follows from Theorem 3.1 of [5] 
and Theorem 3.6. 

(ii) By Theorem 3.6,  1( )Sl G  is module ( , )φ ϕ -biflat if and only if 1( )Sl G  is module ( , )φ ϕ -amenable. 
It follows from Theorem 3.1 of [5] that S  is amenable if and only if 1( )Sl G  is module ( , )φ ϕ -biflat.   
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