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Abstract

A classical but still very dynamic topic in the field of Differential Geometry is
the study of surfaces with constant mean curvature (cmc surfaces) in 3-dimensional
spaces and, more generally, of submanifolds with parallel mean curvature vector
field (pmc submanifolds) in Riemannian manifolds with arbitrary dimension. Their
history is spread on more than six decades, in the case of cmc surfaces, and goes
back to the early 1970s, in the case of pmc submanifolds, to papers like [35] by B.-Y.
Chen and G. D. Ludden, [52, 53] by J. Erbacher, [58] by D. Ferus, [83] by D. A.
Hoffman, or [136] by S.-T. Yau.

In the following, we shall briefly recall only some of those results that represent
a source of inspiration for our work. Two very powerful tools were mainly used to
prove these results: holomorphic differentials defined on cmc (or pmc) surfaces and
Simons type equations.

H. Hopf [85] was the first to use a holomorphic differential to show that any cmc
surface homeomorphic to a sphere in Euclidean 3-space is actually a round sphere.
His result was extended to cmc surfaces in 3-dimensional space forms by S.-S. Chern
[41], and then to cmc surfaces in product spaces of type M2(c) × R, where M2(c)
is a complete simply-connected surface with constant curvature c, as well as Nil(3)

and P̃SL(2,R), by U. Abresch and H. Rosenberg [1, 2].
The next natural step was to study pmc surfaces in product spaces of type

Mn(c) × R, where Mn(c) is a space form with constant sectional curvature c, i.e.,
those surfaces satisfying ∇⊥H = 0, where ∇⊥ is the connection in the normal bundle
and H is the mean curvature vector field. Two very important papers on this topic
are [5, 6] by H. Alencar, M. do Carmo, and R. Tribuzy. In these articles they intro-
duce a holomorphic differential (that generalizes the Abresch-Rosenberg differential
defined in [1] for cmc surfaces in M2(c) × R) and use it to study the geometry of
pmc surfaces. One of the main results in [6] is a reduction of codimension theorem,
showing that a pmc surface immersed in Mn(c)×R either is a minimal surface in a
totally umbilical hypersurface of Mn(c); or a cmc surface in a 3-dimensional totally
umbilical or totally geodesic submanifold of Mn(c); or it lies in M4(c)× R.

Another very effective method developed in order to study minimal or, more
generally, cmc and pmc submanifolds in Riemannian manifolds, is to use Simons
type equations.

In 1968, J. Simons [128] discovered a fundamental formula for the Laplacian of
the second fundamental form of a minimal submanifold in a Riemannian manifold
and used it to characterize certain minimal submanifolds of a sphere and Euclidean
space. One year later, K. Nomizu and B. Smyth [112] generalized Simons’ equation
in the case of cmc hypersurfaces in a space form and their result was then extended,
in B. Smyth’s work [129], to the more general case of pmc submanifolds in a space
form. Over the years such formulas, nowadays called Simons type equations, were
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used more and more often in studies on cmc and pmc submanifolds (see, for example,
[4, 7, 8, 16, 18, 28, 39, 123]).

During the last three decades one could observe an ever growing interest in
the study of certain fourth order partial differential equations, which generalize the
notion of harmonic maps.

In their seminal paper [49], J. Eells and J. H. Sampson suggested the notion
of biharmonic maps ψ : M → N between two Riemannian manifolds, defined as
critical points of the bienergy functional

E2(ψ) =

∫
M
|τ(ψ)|2dv,

where τ(ψ) = trace∇ψdψ is the tension field of ψ, ∇ψ being the connection in the
pull-back bundle ψ−1TM . If M is not a compact manifold, then biharmonic maps
ψ : M → N are defined as solutions of the Euler-Lagrange equation τ2(ψ) = 0,
where τ2(ψ) = ∆τ(ψ) − trace R̄(dψ, τ(ψ))dψ is the bitension field of ψ. It is easy
to see that any harmonic map is biharmonic and that is why we are interested in
proper-biharmonic maps, i.e., those biharmonic maps which are not harmonic.

A special case is that of biharmonic Riemannian immersions, or biharmonic
submanifolds, i.e., those submanifolds for which the inclusion map is biharmonic.
This definition of biharmonic submanifolds coincides, when working in Euclidean
space (and only then), with that proposed by B.-Y. Chen [31], where a biharmonic
submanifold is characterized by the fact that its mean curvature vector field is har-
monic.

Although only non-existence results for proper-biharmonic submanifolds in Eu-
clidean space were obtained (see, for example, [34, 48, 91, 92, 106]), when the
ambient space is not flat, numerous examples and classification results for proper-
biharmonic submanifolds were found in papers like [12]-[14], [21]-[26], [44, 88, 100,
101, 104, 106], [117]-[119], [124]-[126], and [139].

Our thesis is organized in two parts, the first one, that contains two chapters,
being devoted to the study of pmc submanifolds, while in the second part, consisting
of three chapters, we consider biharmonic submanifolds.

In the first chapter, Reduction of codimension results and holomorphic differen-
tials for surfaces with parallel mean curvature, we present results from [62], [77],
and [78] on pmc surfaces in complex, cosymplectic, and Sasakian space forms, re-
spectively. In all these situations, we prove reduction of codimension theorems and
also introduce holomorphic differentials that are then used to study the geometry of
some of these surfaces.

The second chapter, Simons type formulas and applications. Surfaces with par-
allel mean curvature and finite total curvature, is devoted to the study of pmc sub-
manifolds, this time of arbitrary dimension, in Mn(c)×R. We first prove two Simons
type equations that are then used to obtain gap theorems for such submanifolds.
We also consider pmc surfaces with finite total curvature and find a result on their
compactness. The chapter ends with a classification result for helix pmc surfaces.
These results were obtained in [17], [63], [72], [74], [75], and [76].

We begin dealing with biharmonic submanifolds in the third chapter, Biharmonic
and Biconservative Submanifolds in Mn(c)×R, that is based on [71] and [72]. Here,
we first present a gap theorem for pmc proper-biharmonic submanifolds in Mn(c)×R
and also classify pmc proper-biharmonic surfaces in this space. We then turn our



3

attention to biconservative surfaces in Mn(c)× R, i.e., those surfaces for which the
tangent part of the bitension field vanishes (we note that biconservative submanifolds
have only very recently begun to be studied in articles like [27, 80, 107, 108]). We
completely determine such surfaces that have parallel mean curvature vector field
and obtain explicit examples of cmc biconservative surfaces, when n = 3. Also
pmc biconservative surfaces with finite total curvature in Hadamard manifolds are
considered and a compactness result is obtained, in the last part of the chapter.

In the fourth chapter, Biharmonic submanifolds in Sasakian space forms, we
study biharmonic submanifolds in Sasakian space forms and obtain classification re-
sults, as well as explicit examples, for proper-biharmonic curves, proper-biharmonic
Hopf cylinders over homogeneous real hypersurfaces in CPn, and 3-dimensional
proper-biharmonic integral C-parallel submanifolds in a 7-dimensional Sasakian space
form. We also present a method to construct biharmonic anti-invariant submanifolds
from biharmonic integral submanifolds. The results in this chapter first appeared in
[59], [60], [61], and [65]-[70].

Biharmonic submanifolds in complex space forms are studied in the last chapter.
First, are presented some general results on the biharmonicity of certain classes
of submanifolds. We continue with a formula that relates the bitension fields of
a submanifold in CPn and its corresponding Hopf cylinder in S2n+1. Next, we
prove a result on the biharmonicity of Clifford type submanifolds in CPn, while in
the last part of the chapter we classify proper-biharmonic curves and pmc proper-
biharmonic surfaces in CPn, and also 3-dimensional proper-biharmonic Lagrangian
parallel submanifolds in CP 3. This chapter contains results from [64], [70], and
[73].

Whilst throughout the thesis we tried to offer the reader an image as complete
as possible of our work, due to the need of keeping the presentation at a reasonable
length, we were forced to skip many of the proofs and sometimes even not to mention
some of our results that otherwise we consider interesting.
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[13] A. Balmuş, S. Montaldo, and C. Oniciuc, Biharmonic hypersurfaces in 4-dimensional space

forms, Math. Nachr. 283 (2010), 1696–1705.
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(1962), 135–145.
[116] M. Okumura, Hypersurfaces and a pinching problem on the second fundamental tensor, Amer.

J. Math. 96 (1974), 207–213.
[117] Y. L. Ou, On conformal biharmonic immersions, Ann. Global Anal. Geom. 36 (2009), 133–

142.
[118] Y.-L. Ou, Biharmonic hypersurfaces in Riemannian manifolds, Pacific J. Math. 248 (2010),

217–232.
[119] Y.-L. Ou and Z.-P. Wang, Constant mean curvature and totally umbilical biharmonic surfaces

in 3-dimensional geometries, J. Geom. Phys. 61 (2011), 1845–1853.
[120] H. Reckziegel, Horizontal lifts of isometric immersions into the bundle space of a pseudo-

Riemannian submersion, Global differential geometry and global analysis 1984 (Berlin, 1984),
264–279, Lecture Notes in Math., 1156, Springer, Berlin, 1985.

[121] G. Ruiz-Hernández, Minimal helix surfaces in Nn × R, Abh. Math. Semin. Univ. Hambg. 81
(2011), 55–67.
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J. 21 (1969), 501–507.
[133] S. Tanno, The topology of contact Riemannian manifolds, Ill. J. Math. 12 (1968), 700–717.
[134] R. Tribuzy, Hopf’s method and deformations of surfaces preserving mean curvature, An. Acad.

Brasil. Cienc. 50 (1978), 447–450.
[135] K. Yano and M. Kon, Structures on Manifolds, Series in Pure Mathematics 3, World Scientific

Publishing Co., Singapore, 1984.
[136] S.-T. Yau, Submanifolds with constant mean curvature. I, Amer. J. Math. 96 (1974), 346–366.
[137] S.-T. Yau, Harmonic functions on complete Riemannian manifolds, Commun. Pure. Appl.

Math. 28 (1975), 201–228.
[138] B. White, Complete surfaces of finite total curvature, J. Differential Geom. 26 (1987), 315–326.
[139] W. Zhang, New examples of biharmonic submanifolds in CPn and S2n+1, An. Ştiinţ. Univ.
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