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1 A short history on the domain. Main personal achievements

Since early sixties, research has paid increasing attention to the study of reflected stochastic differ-
ential equations, the reflection process being interpreted in different ways. As the first approaches
of the topic, Skorokhod considers the problem of reflection for diffusion processes into a bounded
domain (see, e.g., [160]), while Tanaka focuses on the problem of reflecting boundary conditions
into convex sets for SDEs (see [165]). This kind of problem became the interest of many other
authors, who consider that the state process is reflected by one or two reflecting barriers, both for
forward and backward stochastic differential equations. The field of applications of such prob-
lems also bloomed.

The aim of the present thesis consists in presenting the personal contribution in the area dur-
ing the time from my Ph.D. thesis, defended in 2009. The research can be described as being
focused on two mainstreams: forward stochastic variational inequalities and backward stochastic
variational inequalities.

The intention is to extend, for the beginning, the notion of reflection for forward and back-
ward stochastic differential equations by allowing to the reflecting directions to be perturbed by a
Lipschitz term which destroys the maximal monotonicity of the multivalued operator which acts
on the equation. In this manner, the classical Yosida approximating techniques must be reinter-
preted. On the other hand, the author addresses some different kind of problems, by presenting
the gap which arrises when we renounce at the convexity of the reflecting domains. This exten-
sion comes with two different kind of problems, apart from the ones given by the non-Lipschitz
and the non-maximal-monotonicity of the term driving the involved equations. First, when we
situate in the forward framework for stochastic differential equations, as we know, a deterministic
(Skorokhod) problem must be analyzed. This is done by approximating it with Yosida penaliza-
tions. While, in the convex setup, we develop a technique which permits us to provide existence
and uniqueness results, in the nonconvex setup, even for the approximating equations there are
no known results for the existence of the solution. This is why we have to construct the tools
needed for approximating the deterministic multivalued equations in this new framework. More
precisely, we give some adapted and refined properties of the Yosida penalization, in a similar
manner with the corresponding counterpart, found in the convex setup, as we can see, for exam-
ple, in Barbu [6, Chapter 1] or Brézis [38, Chapter II]. The results are quite strong and permit to
approach the second type of problem which appears when we leave the convex framework, as
one can see in Chapter 3, Section 3.4. When dealing with backward stochastic differential equa-
tions, with oblique reflection and convex constraints, we do not have to consider first a determin-
istic problem and we provide directly some results concerning the existence and uniqueness of
a solution. This solution is strong or weak, depending on the dependence on the state process
of the perturbing term; the feedback term is absolutely continuous, not only a continuous and
bounded variation one, as we can obtain in the forward case. However, the problem of the ex-
istence of a solution for backward stochastic variational inequalities with nonconvex constraints
was - and partially remains - a very important open problem in stochastic analysis. With the tools
developed in Chapter 2, Section 2.3 we are able to partially solve the problem by replacing the
Brownian movement driving the multivalued equation with a different kind of stochastic process,
PDMP (that is, Piecewise deterministic Markov process). Also, as a by-product, this is the first
time when occupation measures were used to consider control problems for this type of back-
ward variational inclusions. As application, we study some mathematical properties leading to
the detection of infection time in a specific class of stochastic gene networks. The basic example
one refers is a bistable (multistable) system consisting in a temperate virus and a host.
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We now briefly present the structure of the thesis.
Chapter 1 presents a relatively detailed history of the domain, with precise informations re-

garding the author’s contribution on the filed.
Chapter 2 is divided into five sections and deals with the analysis of some forward determin-

istic and stochastic variational inclusions, with generalized reflection. For the beginning, Section
2.1 presents some invariance criteria for a stochastic differential equation whose state evolution is
constrained by time-dependent security tubes, by considering an equivalent problem where the
square of distance function represents a viscosity solution to an adequately defined partial differ-
ential equation. We also derive a sufficient condition for the case of the drift coefficient defined
by a linear expression; this sufficient condition has a significantly simpler form that facilitates the
concrete use in applications. We then present a broader context when solutions are constrained
by more general time-dependent convex domains. The analyzed problems become more general
in Section 2.2. Its main objective is to study a stochastic variational inequality featuring a product
of the for H (X) @' (X) which will be called the set of oblique subgradients. The problem becomes
challenging due to the presence of this new term, which imposes the use of some specific ap-
proaches because this new term preserves neither the monotony of the subdifferential operator
nor the Lipschitz property of the matrix involved H(X). In the forward case we first focus on
the deterministic case, by considering a generalized Skorokhod problem with oblique reflection
of the form

dx (t) +H (x (t)) dk (t) = f (t; x (t)) dt+ dm (t) ; t � 0; dk (s) 2 @' (x (s)) (ds) ;

where the singular inputm : R+ ! Rd is a continuous function. The existence results are obtained
via Yosida penalization techniques.

In Section 2.3 we renounce at the convex constraints for the equations found in the previ-
ous section, by considering, for the multivalued operator from the equation the product H@�';
where @�' stands for the Fréchet subdifferential operator of a (�; )-semiconvex function '. Even
the main milestones are similar with the one found in Section 2.2, their approach is completely
different since we have to construct from the beginning the tools which we shall use. The chal-
lenging part proves to be the study of a basic Cauchy problem. After we obtain the existence and
uniqueness of its solution, we focus on a nonconvex Skorokhod problem with oblique Fréchet
subgradients and, as applications, stochastic variational inequalities with nonconvex constraints
are envisaged.

Section 2.4 studies obstacle problems for some stochastic differential equations of parabolic
type. The key point consists in a weaker Hölder continuity condition for the diffusion process.
Under the Gelfand-Lions triple setup, the authors obtain, under some “sufficiently rigid” bar-
riers, a unique strong solution for the multivalued stochastic equation. Without that restricted
condition, the notion of the solution can be extended and one obtain a weak-variational solution.
Apart from the importance of its result, this section establishes also a rigorous construction of the
framework for the formalism used in pioneering work Bensoussan, Răşcanu [15], where the mea-
surability issues are omitted. Finally, in Section 2.5, the study aims to some infinite dimensional
stochastic variational inequalities with oblique reflection. We prove the existence of a solution for
a smooth multivalued problem with generalized reflection at the frontier and some applications
to systems of PDEs are also provided.

Chapter 3 is structured also under the form of five sections and deals with the analysis of some
backward stochastic variational inclusions, with - possibly - generalized reflection.

Section 3.1 treats the existence and uniqueness of the solution for the more general backward
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problem, featuring convex constraints and driven by a Brownian movement B;

(1) � dYt +H (t; Yt) @' (Yt) (dt) 3 F (t; Yt; Zt) dt� ZtdBt; t 2 [0; T ] ; YT = �;

When we have only a time dependence for the matrix H we obtain the existence of a strong
solution, together with the existence of an absolutely continuous feedback process. For the gen-
eral case of a state dependence for H we use tightness criteria in order to get a solution for the
equation. In Section 3.2 we renounce at the perturbing matrix H and derive some numerical
Euler-Yosida schemes for the backward stochastic variational inequality considered in a Markov-
ian framework. The convergence rate of the scheme is also provided. In Section 3.3 we prove the
existence and uniqueness of the solution for an anticipated backward variational inclusion of the
type (1), with the driver F

�
t; Yt; Zt; Yt+�(t); Zt+�(t)

�
; t 2 [0; T ] and the terminal conditions Yt = �t ;

Zt = �t ; t 2 [T; T + `] ; P–a.s. The instruments which permit to obtain the desired results come
from Chapter 3, Section 3.1 and Peng,Yang [139].

Section 3.4 makes the step from the convex to the nonconvex setup for generalized backward
stochastic variational inequalities. We investigate a mathematical model associated to the infec-
tion time in multistable gene networks. The mathematical processes are of hybrid switch type.
The switch is governed by pure jump modes and linked to DNA bindings. The differential com-
ponent follows backward stochastic dynamics reflected in some mode-dependent, nonconvex do-
mains. First, we study the existence of solutions to the resulting stochastic variational inclusions,
by reducing the model to a family of ordinary variational inclusions (see Confortola, Fuhrman,
Jacod [49]) with generalized reflection in semiconvex domains. Second, by considering control-
dependent drivers, we hint to some model-selection approach by embedding the (controlled)
backward stochastic variational inclusion in a family of regular measures. Regularity and struc-
tural properties of these sets are given.

Using the reduction from Confortola, Fuhrman, Jacod [49], in Section 3.5, we propose an
explicit, easily-computable algebraic criterion for approximate null-controllability of a class of
general piecewise linear switch systems with a multiplicative noise. Second, we prove by ex-
amples that the notion of approximate controllability is strictly stronger than approximate null-
controllability. A sufficient criterion for this stronger notion is also provided. The results are
illustrated on a model derived from repressed bacterium operon (introduced in Krishna, Baner-
jee, Ramakrishnan, Shivashankar [104] and reduced in Crudu, Debussche, Rădulescu [56]).

Chapter 4 is devoted to some open problems and future research topics strongly related to the
subjects analyzed during the present work.

The thesis ends with a rich list of 177 reference papers, all cited in the text.
The present thesis is based on 11 scientific papers, which were done within the projects:
� CNCSIS 1156 / 2005 (-2008), Deterministic and stochastic differential models with states con-

straints. Control, invariance and numerical approximation
� IDEI ID_395 / 2007 (-2010), Differential systems with random perturbations; control and viability

problems
� PN-II-ID-PCE-2011-3-0843, no. 241/05.10.2011 (-2016), Deterministic and stochastic systems

with state constraints
� PN-II-ID-PCE-2011-3-1038, no. 208/05.10.2011 (-2015), Diagonal stability and flow invariance

in control engineering. Techniques specialized for classes of dynamics, encompassed by a unified
framework

� FP7-PEOPLE-2007-1-1-ITN, no. 213841-2 / 2008 (-2012), Deterministic and Stochastic Con-
trolled Systems and Applications
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2 Forward Stochastic Variational Inequalities

2.1 Invariance and feedback approach

Let (
;F ;P; fFtgt�0) be a stochastic basis and fBt : t � 0g a Rk�valued Brownian motion. Given
a non-empty closed set K 2 Rd, a starting moment t0 � 0 and a starting point x0 2 K, it is known
that, by adding a supplementary source (for example the convexity indicator function of a given
convex set K) on the stochastic equation

(2) X t0;x0
t = x0 +

Z t_t0

t0

f(r;X t0;x0
r )dr +

Z t_t0

t0

g(r;X t0;x0
r )dBr; t � 0;

we can maintain the solution X t0;x0
t 2 K, for all t � t0. It is natural to see what are the conditions

on the drift and diffusion coefficients such that the evolution of the state satisfies the constraint
X t0;x0
t 2 K, for all t � t0. We present, as a particular case, the situation when the coefficients of (2)

are characterized by polyhedral representations.

Let us consider K = fK (t) : t � 0g a family of non-empty closed subsets K (t) � Rd.

Definition 1 We state that:

� The family K is strongly invariant for SDE (2) if, for all t0 � 0, x0 2 K(t0) and, for all the solutions
fX t0;x0

t : t � t0g it follows that X t0;x0
t 2 K(t); P� a:s:; 8t � t0:

� The family K is weakly invariant (viable) for SDE (2) if, for every t0 � 0 and x0 2 K(t0) there exists
a solution fX t0;x0

t : t � t0g such that X t0;x0
t 2 K(t); P� a:s:; 8t � t0:

We give a characterization of the invariance in the moving sets K(t), t � 0. Consider the
continuous functions f : [0;+1) � Rd ! Rd and g : [0;+1) � Rd!Rd�k and assume that there
exist L;M > 0 and � 2 R such that, for 8t 2 [0; T ], 8x; y 2 Rd we have

(3)

(
i) hx� y; f(t; x)� f(t; y)i � �jx� yj2; supt2[0;T ] jf(t; x)j �M(1 + jxj):
ii) jg (t; x)� g (t; y)j � Ljx� yj:

Recall the notations

� the distance from x to the set K(t): d(t; x) = dK(t)(x) = inffjx� yj : y 2 K(t)g;
� Sd � Rd�d, the space of symmetric non-negative matrices,
� Ck;npol ([0; T ] � Rd), the set of functions h : [0; T ] � Rd ! R of class Ck;n such that the function
h and its derivatives Di

th(t; x), j 2 0; k and D�
xh(t; x), � = (�1; :::; �d), 0 � �1 + ::: + �d � n,

�i 2 N for every i, have polynomial increasing to infinity in the space variable, that is there
exist C = CT � 0 and p = pT 2 N� such that, for all (t; x) 2 [0; T ]� Rd,X

i;�
[jDi

th(t; x)j+ jD�
xh(t; x)j] � C(1 + jxjp):

� the infinitesimal generator associated with fX t0;x0
t : t � t0g:

A(t)'(x) = 1

2
Tr
�
D2
x'(x)g (t; x) g

T (t; x)
�
+ hf(t; x);rx'(x)i
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Consider now the following parabolic PDE

(4)
@u(t; x)

@t
+A(t)u(t; x) +G(t; x) = 0; u(T; x) = �(x); (t; x) 2 [0; T ]� Rd;

where G 2 C0;0pol([0; T ] � Rd) and � 2 C0;0pol(Rd). For the above PDE we use the definition of the
viscosity solutions introduced by Crandal, Ishii, Lions [54].

2.1.1 Invariance conditions for a control security tube

We first analyze the classical toy model of a control security tube. We derive necessary and sufficient
conditions that allow us to maintain the trajectory as a certain distance from a time-dependent
point. If the drift coefficient has a linear form, given by a polyhedral representation, than the
invariance conditions can be expressed using matrix measures.

Theorem 2 Consider � 2 C1([0; T ];R+), � > 0, a 2 C1([0; T ];Rd) and the time-dependent domain

(5) K(t) = B(a(t); �(t)) = fx 2 Rd : jx� a(t)j � �(t)g:
Equation (2) is B(a(t); �(t))� invariant if and only if, 8(t; x) 2 [0; T ] � Rd with jx � a(t)j = �(t), we
have:

(6)

(
whenever g� (t; x) (x� a(t)) = 0 then

2 hx� a(t); f(t; x)i+ jg (t; x)j2 � 2hx� a(t); a0(t)i+ 2�(t)�0(t):
Comments on the linear case. We consider a linear form for the drift coefficient in SDE (2)

and let the set K(t) defined by (5), with a(t) � 0. Define f(t; x) = A(t)x, where A : R+ ! Rd�d
is a continuous and bounded in norm matrix. The second condition from (6) can be rewritten
as 2xTA (t)x + jg (t; x)j2 � 2�(t)�0(t); for jxj = �(t), where 2xTA (t)x = xT (A (t) + AT (t))x =:
xTQ (t)x, Q (t) being a symmetric matrix. The Courant-Fischer theorem applied to Q(t) gives us
the dominant eigenvalue

�max(Q (t)) = max
x 6=0

xTQ (t)x

xTx
;

On the other hand, �max(Q (t)) = 2�max
�
1
2

�
A (t) + AT (t)

��
= 2�2 (A (t)), where

�2 (M) = lim
h&0

1

h
[jI + hM j � 1] = 1

2
�max(M +MT )

represents the measure of matrix M with respect to the matrix norm (e.g. Bernstein [17, Fact
11.15.7]). Therefore, we have

max jxj=�(t)
g�(t;x)x=0

2xTA (t)x � maxjxj=�(t) 2xTA (t)x = 2�2(t)�2 (A (t)) :

Thus, from (6) we get the following sufficient condition for the invariance of the set K(t):

(7) �2 (A (t)) +
1

2
��2 (t)max jxj=�(t)

g�(t;x)x=0

jg (t; x)j2 � ��1(t)�0(t); 8t 2 [0; T ] :

It is worth noticing that, for g(t; x) � 0, jxj = �(t), 8t 2 [0; T ], the necessary and sufficient condition
(6) is equivalent to the inequality

(8) �2 (A (t)) � ��1 (t) �0(t); 8t 2 [0; T ] ;
Inequality (8) is similar to the necessary and sufficient condition presented by paper Păstrăvanu,
Matcovschi [137] for the invariance of K(t)with respect to deterministic linear dynamics.

5
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2.1.2 Feedback-based approach

Alternatively, keeping the above notations, we can reinterpret conditions (6) and the invariance
problem from the perspective of finding a Lipschitz feedback law U(t; x) which yields the time-
dependent set K(t) invariant for the SDE

(9) X t0;x0
t = x0 +

Z t_t0

t0

U(r;X t0;x0
r )dr +

Z t_t0

t0

f(r;X t0;x0
r )dr +

Z t_t0

t0

g(r;X t0;x0
r )dBr; t � 0:

The general case will be analyzed in the sequel, by considering the problem in the framework of
multivalued (normal and oblique reflected) stochastic variational inequalities. For the moment we
consider only the simple case of K (t) � B (0; �), for every t. There exists a continuous feedback
law K 2 L0(
;BVloc([0;+1);Rd)) such that, for all x 2 B (0; �), we have8>><>>:

X t0;x0
t = x0; 80 � t � t0;

X t0;x0
t = x0 � (Kt �Kt0) +

Z t

t0

f(r;X t0;x0
r )dr +

Z t

t0

g(r;X t0;x0
r )dBr; t0 � t;

X t0;x0
t 2 B (0; �) and dKt 2 @IB(0;�)(X

t0;x0
t )(dt); 8t � 0:

By L0(
;BVloc([0;+1);Rd)) we denote the space of random processes with values in the space
of local bounded variation functions BVloc([0;+1);Rd); the @IB(0;�) represents the subdifferential
operator of the convexity indicator function IB(0;�) (x) = 0 if x 2 B (0; �) and +1 otherwise. In
this context, the problem consists in finding an absolutely continuous control

(10) Kt =

Z t

0

U(r;X t0;x0
r )dr:

Assuming that such a control exists and maintaining the particular linear form of the drift coeffi-
cient introduced in the previous sub-section, then by (6), B (0; �) is invariant if and only if, for all
t � 0 and jxj = �, each time when g� (t; x)x = 0 we obtain 2 hx; U (t; x) + A(t)xi + jg (t; x)j2 � 0:
Hence, in general, a B (0; �)-invariance control of the form (10) does not exist, but if g� (t; x)x = 0
for all t � 0 and jxj = � then the feedback law

U (t; x) := �A(t)x� 1

2�2
jg (t; x)j2 x

yields the setB (0; �) invariant for the SDE (9). If the structure ofA(t) is of multidimensional type,
then the linear feedback U (t; x) = �(t)x, with

�(t) := � 1

2�2
sup
jxj=�

jg (t; x)j2 �max
i=1;n

jAij

assures the B (0; �)�invariance for (9). Finally, it is important to mention that a time-independent
feedback of the form U (x) = �x can be used, where the constant � is defined by

� := � sup
t2[0;T ]

(
1

2�2
sup
jxj=�

jg (t; x)j2 + jA(t)j
)

and, respectively, by � := � 1

2�2
sup jxj=�

t2[0;T ]
jg (t; x)j2 �maxi=1;n jAij.

6
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2.2 Generalized SVIs driven by convex constraints

As the main achievement of this section we prove the existence and uniqueness of the solution
for the following stochastic variational inequality

(11)

(
dXt +H (Xt) @' (Xt) (dt) 3 f (t;Xt) dt+ g (t;Xt) dBt; t > 0;

X0 = x0;

where B is a standard Brownian motion defined on a complete probability space and the new
quantity H(X) that appears acts on the set of subgradients; the product H (X) @' (X) will be
called, from now on, the set of oblique subgradients. First, we focus on the deterministic case,
considering a generalized Skorokhod problem with oblique reflection of the form

(12)

8<: x (t) +

Z t

0

H (x (s)) dk (s) = x0 +

Z t

0

f (s; x (s)) ds+m (t) ; t � 0;

dk (s) 2 @' (x (s)) (ds) ;

where the singular inputm : R+ ! Rd is a continuous function. The existence results are obtained
via classical Yosida penalization techniques. We then continue with the study of some stochastic
variational inequalities with oblique reflection.

2.2.1 A convex Skorokhod problem with oblique subgradients

Notations. Hypotheses.
Consider the deterministic generalized convex Skorokhod problem with oblique subgradients:

(13) dx (t) +H (x (t)) @' (x (t)) (dt) 3 dm (t) ; t > 0; x (0) = x0;

where

(14) ' : Rd ! (�1;+1] is a proper convex lower semicontinuous (l.s.c.) function

and

(15)
�

(i) x0 2 Dom (') := fx 2 Rd : '(x) < +1g;
(ii) m 2 C

�
[0;+1);Rd

�
; m (0) = 0:

H = (hi;j)d�d 2 C2b
�
Rd;Rd�d

�
is a matrix, such that for all x 2 Rd,

(16)

8<:
(i) hi;j (x) = hj;i (x) ; for every i; j 2 1; d;

(ii)
1

c
juj2 � hH (x)u; ui � c juj2 ; 8 u 2 Rd (for some c � 1).

Let [H (x)]�1 be the inverse matrix of H (x). Then [H (x)]�1 has the same properties (16) as H (x).

Let jH (x)j :=
�Pd

i;j=1 jhi;j (x)j
2
�1=2

and denote

b = sup
x;y2Rd; x 6=y

jH (x)�H (y)j
jx� yj + sup

x;y2Rd; x 6=y

j [H (x)]�1 � [H (y)]�1 j
jx� yj ;

7
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Define now by @' the subdifferential operator of ', @' (x) := fx̂ 2 Rd : hx̂; y � xi+ ' (x) � ' (y) ;
for all y 2 Rdg and Dom(@') := fx 2 Rd : @'(x) 6= ;g. We will use the notation (x; x̂) 2 @' in
order to express that x 2 Dom(@') and x̂ 2 @'(x).

If E = E � Rd and Ec = Rd n E, then we denote, for " > 0, E" = fx 2 E : distEc (x) � "g =
fx 2 E : B (x; ") � Eg the "�interior of E. We impose the following supplementary assumptions:

(17)

8<:
(i) D = Dom(') is a closed subset of Rd;
(ii) 9 r0 > 0; Dr0 6= ; and h0 = supz2D distDr0 (z) < +1;
(iii) 9 L � 0 such that j' (x)� ' (y)j � L+ L jx� yj ; for all x; y 2 D:

A generalized Skorokhod problem.
Let k : [t; T ] ! Rd, where 0 � t � T . We denote, kkk[t;T ] := sup fjk (s)j : t � s � Tg, and, for

t = 0, kkkT := kkk[0;T ]. Considering D [t; T ] the set of the partitions of the time interval [t; T ], of
the form � = (t = t0 < t1 < ::: < tn = T ), let S�(k) =

Pn�1
i=0 jk(ti+1) � k(ti)j and lkl[t;T ] :=

sup
�2D

S�(k); if t = 0, denote lklT := lkl[0;T ]. Consider the space of bounded variation functions

BV ([0; T ] ;Rd) = fk j k : [0; T ] ! Rd; lklT < +1g: Taking on the space of continuous functions
C
�
[0; T ] ;Rd

�
the usual supremum norm, remark the duality connection (C([0; T ] ;Rd))� = fk 2

BV ([0; T ] ;Rd) j k(0) = 0g, with the duality given by the Riemann-Stieltjes integral. We will say
that a function k 2 BVloc([0;+1);Rd) if, for every T > 0, k 2 BV ([0; T ] ;Rd).

Definition 3 Given two functions x; k : R+ ! Rd, we say that dk (t) 2 @' (x (t)) (dt) if8>>>><>>>>:
(a) x; k : R+ ! Rd are continuous,
(b) x (t) 2 Dom (');
(c) k 2 BVloc

�
[0;+1);Rd

�
; k (0) = 0; and for 80 � s � t � T , 8y 2 C([0; T ] ;Rd);

(d)

Z t

s

hy (r)� x(r); dk (r)i+
Z t

s

' (x (r)) dr �
Z t

s

' (y (r)) dr:

We state that

Definition 4 A pair of functions (x; k) is a solution of the Skorokhod problem with H�oblique subgradi-
ents (13) (and we write (x; k) 2 SP (H@';x0;m)) if x; k : R+ ! Rd are continuous functions and

(18)

8<: (i) x (t) +

Z t

0

H (x (r)) dk (r) = x0 +m (t) ; 8 t � 0;

(ii) dk (r) 2 @' (x (r)) (dr) :

For the clarity of the presentation, some useful technical a priori estimates of the solution
(x; k) 2 SP (H@';x0;m)will be grouped together in a subsection entitled Technical results. Recall
first the notation for modulus of continuity of a function g : [0; T ]! Rd :

mg (") = sup fjg (u)� g (v)j : u; v 2 [0; T ] ; ju� vj � "g :

8
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Technical results.
We present some results with a priori estimates of the solution (x; k) 2 SP (H@';x0;m).

Lemma 5 Let the assumptions (15), (16), (14) and (17) be satisfied. If (x; k) 2 SP (H@';x0;m) ; then
for all 0 � s � t � T; there exists C = C (b; c; L) > 0 such that

(19) mx (t� s) �
�
(t� s) +mm (t� s) +

p
mm (t� s) (lklt � lkls)

�
� exp fC [1 + (t� s) + (lklt � lkls + 1) (lklt � lkls)]g :

Lemma 6 Let the assumptions (15), (16), (14) and (17) be satisfied. If (x; k) 2 SP (H@';x0;m) ; 0 �
s � t � T and

sup
r2[s;t]

jx (r)� x (s)j � 2�0 =
�0
2bc

^ �0 ; with �0 =
r0

2 (1 + r0 + h0)
;

then

(20) lklt � lkls �
1

�0
jk (t)� k (s)j+ 3L

�0
(t� s)

and

(21) jx (t)� x (s)j+ lklt � lkls �
p
t� s+mm (t� s)� eCT (1+kmk

2
T );

where CT = C (b; c; r0; h0; L; T ) > 0:

Lemma 7 Let the assumptions (15), (16), (14) and (17) be satisfied. Let (x; k) 2 SP (H@';x0;m) ;
0 � s � t � T and x (r) 2 D�0 , for all r 2 [s; t]. Then

lklt � lkls � L

�
1 +

2

�0

�
(t� s)

and, denoting by CT = CT (b; c; r0; h0; L; T ) > 0;mx (t� s) � CT � [(t� s) +mm (t� s)] :

Denote now �m (") = "+mm (") ; for every " � 0:

Lemma 8 Let the assumptions (15), (16), (14) and (17) be satisfied and (x; k) 2 SP (H@';x0;m) : Then,
there exists a positive constant CT (kmkT ) = C (x0; b; c; r0; h0; L; T; kmkT ) ; increasing function with
respect to kmkT ; such that, for all 0 � s � t � T :

(22)
(a) kxkT + lklT � CT (kmkT ) ;
(b) jx (t)� x (s)j+ lklt � lkls � CT (kmkT )�

p
�m (t� s):

We renounce now at the restriction that the function f is identically 0 and we consider the
equation written under differential form

(23) dx (t) +H (x (t)) @' (x (t)) (dt) 3 f (t; x (t)) dt+ dm (t) ; t > 0; x (0) = x0;

where

(24)

8<:
(i) (t; x) 7�! f (t; x) : R+ � Rd ! Rd is a Carathéodory function

(ii)

Z T

0

�
f# (t)

�2
dt < +1; where f# (t) = supx2Dom(') jf (t; x)j :

9
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Existence and uniqueness of the solution for the Skorokhod problem.

Theorem 9 Let the assumptions (15), (16), (14), (17) and (24) be satisfied. Then the differential equation
(23) has at least one solution in the sense of Definition 4, i.e. x; k : R+ ! Rd are continuous functions and

(25)

8<: (j) x (t) +

Z t

0

H (x (r)) dk (r) = x0 +

Z t

0

f (r; x (r)) dr +m (t) ; 8 t � 0;

(jj) dk (r) 2 @' (x (r)) (dr) :

Proposition 10 Let the assumptions (16), (15), (14), (17) and (24) be satisfied. Assume also that there
exists � 2 L1loc (R+;R+) such that, for all x; y 2 Rd;

(26) jf (t; x)� f (t; y)j � � (t) jx� yj ; a:e: t � 0:

If m 2 BVloc
�
R+;Rd

�
, then the generalized convex Skorokhod problem with oblique subgradients (13)

admits a unique solution (x; k) in the space C(R+;Rd)� [C(R+;Rd)\BVloc(R+;Rd)]. Moreover, if (x; k)
and (x̂; k̂) are two solutions, corresponding to m, respectively m̂; then

(27) jx (t)� x̂ (t)j � CeCV (t) [jx0 � x̂0j+ lm� m̂lt] ;

where V (t) = lxlt+ l x̂lt + lklt+ l k̂ lt +
Z t

0

� (r) dr and C is a positive constant depending only on

b and c.

Using the hypothesis from the uniqueness result we provide supplementary fine estimates
on the approximating sequence (x")">0. We are now able to make the transition to the stochastic
framework.

Corollary 11 If (
;F ;P; fFtgt�0) is a stochastic basis and M a Ft�progressively measurable stochastic
process such that M� (!) 2 C1

�
R+;Rd

�
; P� a:s: ! 2 
, then, under the assumptions of Proposition 10,

P� a:s: ! 2 
, the random generalized Skorokhod problem with oblique subgradients:8<: Xt (!) +

Z t

0

H (Xt (!)) dKt (!) = x0 +

Z t

0

f (s;Xs (!)) ds+Mt (!) ; t � 0;

dKt (!) 2 @' (Xt (!)) (dt)

admits a unique solution (X� (!) ; K� (!)) :MoreoverX andK areFt�progressively measurable stochastic
processes.

2.2.2 SVIs with oblique subgradients

Notations. Hypotheses
Our objective is to solve the following SVI with oblique reflection, driven by a convex subdif-

ferential operator:

(28)

8<: Xt +

Z t

0

H (Xt) dKt = x0 +

Z t

0

f (s;Xs) ds+

Z t

0

g (s;Xs) dBs; t � 0;

dKt 2 @' (Xt) (dt) ;

10
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where x0 2 Rd and, by denoting f# (t) := supx2Dom(') jf (t; x)j and g# (t) := supx2Dom(') jg (t; x)j ;

(29)

8>><>>:
(i) (t; x) 7�! f (t; x) : R+ � Rd ! Rd and (t; x) 7�! g (t; x) : R+ � Rd ! Rd�k are

Carathéodory functions (i.e. measurable w.r. to t and continuous w.r. to x),

(ii)

Z T

0

(f# (t))2dt+

Z T

0

(g# (t))4dt < +1;

We also add Lipschitz continuity conditions:

(30)

(
9 � 2 L1loc (R+) ; 9 ` 2 L2loc (R+) s.t. 8 x; y 2 Rd; a:e: t � 0;
jf (t; x)� f (t; y)j � � (t) jx� yj and jg (t; x)� g (t; y)j � ` (t) jx� yj :

Definition 12 (I) Given a stochastic basis (
;F ;P; fFtgt�0) and a Rk�valued Ft�Brownian motion
fBt : t � 0g ; a pair (X;K) : 
 � [0;+1) ! Rd � Rd of continuous Ft�progressively measurable
stochastic processes is a strong solution of the SDE (28) if, P� a:s:

(31)

8>>>>>>>>>><>>>>>>>>>>:

i) Xt 2 Dom ('); 8 t � 0; ' (X�) 2 L1loc (R+) ;
ii) K� 2 BVloc

�
[0;+1);Rd

�
; K0 = 0,

iii) Xt +

Z t

0

H (Xs) dKs = x0 +

Z t

0

f (s;Xs) ds+

Z t

0

g (s;Xs) dBs; 8 t � 0;

iv) 8 0 � s � t; 8y : R+ ! Rd continuous :Z t

s

hy (r)�Xr; dKri+
Z t

s

' (Xr) dr �
Z t

s

' (y (r)) dr:

That is (X� (!) ; K� (!)) 2 SP (H@';x0;M� (!)) ; P� a:s: ! 2 
; with

Mt =

Z t

0

f (s;Xs) ds+

Z t

0

g (s;Xs) dBs :

(II) If there exists a stochastic basis (
;F ;P;Ft)t�0, a Rk�valued Ft�Brownian motion fBt : t � 0g
and a pair (X�; K�) : 
� R+ ! Rd � Rd of Ft�progressively measurable continuous stochastic processes
such that

(X� (!) ; K� (!)) 2 SP (H@';x0;M� (!)) ; P� a:s: ! 2 
;
then the collection (
;F ;P;Ft; Bt; Xt; Kt)t�0 is called a weak solution of the SVI (28).

Denote by Spd [0; T ], p � 0, the space of progressively measurable continuous stochastic processes
X : 
 � [0; T ] ! Rd, such that kXkSpd = (E kXk

p
T )

1
p
^1
< +1; if p > 0 and kXkS0d = E [1 ^ kXkT ] ;

where kXkT = supt2[0;T ] jXtj. The space (Spd [0; T ] ; k�kSpd ); p � 1; is a Banach space and Spd [0; T ],
0 � p < 1, is a complete metric space with the metric �(Z1; Z2) = kZ1 � Z2kSpd (when p = 0 the met-
ric convergence coincides with the probability convergence). Denote by �pd�k (0; T ) ; p 2 [0;+1),
the space of progressively measurable stochastic processes Z : 
� (0; T )! Rd�k such that

kZk�p =

8>>>>><>>>>>:

"
E
�Z T

0

kZsk2ds
� p

2

# 1
p
^1

; if p > 0;

E

"
1 ^

�Z T

0

kZsk2ds
� 1

2

#
; if p = 0:

The space (�pd�k (0; T ) ; k�k�p); p � 1; is a Banach space and �pd�k (0; T ), 0 � p < 1; is a complete
metric space with the metric �(Z1; Z2) = kZ1 � Z2k�p .

11
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Existence and uniqueness
Theorem 13 deals with the existence of a weak solution in the sense of Definition 12, while

Theorem 14 proves the uniqueness of a strong solution.

Theorem 13 Let the assumptions (16), (14), (17) and (29) be satisfied. Then the SVI (28) has at least one
weak solution (
;F ;P;Ft; Bt; Xt; Kt)t�0 :

Proof. The proof is divided in three main steps. We construct a sequence of approximating equa-
tions, whose unique sequence of solutions is tight in C([0; T ] ;R2d+1), which permits us to make
use of the Prohorov and Skorokod theorems. Finally, we pass to the limit in order to obtain a
weak solution for the SVI (28).

We now prove the uniqueness of the solution in this metric space S0d of progressively measur-
able continuous stochastic processes X : 
� R+ ! Rd.

Theorem 14 If the assumptions (16), (14), (17), (29) and (30) are satisfied, then the SVI (28) has a unique
strong solution (X;K) 2 S0d � S0d :

Proof. It is sufficient to prove the pathwise uniqueness, since by Ikeda, Watanabe [94, Theorem 1.1,
page 149] the existence of a weak solution and the pathwise uniqueness implies the existence of a strong
solution.

12
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2.3 Multivalued differential equations driven by oblique Fréchet subgradi-
ents

2.3.1 (�; )�semiconvex functions

Definition 15 Let  � 0. A set E is �semiconvex if for all x 2 Bd (E) there exists x̂ 2 Rdnf0g such
that

hx̂; y � xi �  jx̂j jy � xj2 ; 8y 2 E:

Definition 16 Let E be a non empty closed subset of Rd. We say that E satisfies the “uniform exterior
ball condition” (for short, r0�UEBC) if

� NE (x) 6= f0g, for all x 2 Bd (E), where NE (x) =
n
u 2 Rd : lim"&0

distE(x+"u)
"

= juj
o

is the
normal exterior cone to E in x 2 Bd(E).

� there exists r0 > 0 such that, for every x 2 Bd (E) and each u 2 NE (x), juj = r0 we have

distE (x+ u) = r0 or, equivalently, B (x+ u; r0) \ E = ;;

We present a result which establishes a one-to-one correspondence between the �semiconvexity
property of a set and its 1

2
�UEBC. Let us now define the "�neighborhood of a given set E � Rd

by E"(E) :=
�
z 2 Rd : distE (z) < "

	
and its closed "�neighborhood is E"(E). The "�interior of

the closed set E is I"(E) := fx 2 E j distBd(E)(x) � "g. Let ' : Rd ! (�1;+1] and denote
Dom (') =

�
v 2 Rd : ' (v) < +1

	
.

Definition 17 Define the Fréchet subdifferential of ' at u 2 Rd by

@�' (u) =

�
u� 2 Rd : lim inf

v!u;v 6=u

' (v)� ' (u)� hu�; v � ui
jv � uj � 0

�
;

if u 2 Dom (') ; and @�' (u) = ; if u =2 Dom (') :

Let us introduce now the following notations:

a) Dom (@�') =
�
u 2 Rd : @�' (u) 6= ;

	
;

b) @�' = f(u; u�) : u 2 Dom (@�') ; u� 2 @�' (u)g ;
c) r�' (u) is the minimal norm element of the set @�' (u) , when @�' (u) 6= ;:

Definition 18 Let �;  � 0. The function ' : Rd ! (�1;+1] is a (�; )�semiconvex function if
int (Dom (')) = Dom (') is �semiconvex, Dom (@�') 6= ; and, for every (u; u�) 2 @�' and v 2 Rd :

hu�; v � ui+ ' (u) � ' (v) + (�+  ju�j) jv � uj2 :

The following result shows that the Fréchet subdifferential operator @�' is locally bounded
in the interior of the domain of '. This quite strong property permits us to prove also that the
interior of Dom (') coincides with the interior of Dom (@�'). However, in order to be able to
approach, under not very restricted/strong assumptions on the initial data the initial multivalued
evolution equation, a more refined version of Proposition 19 is mandatory. This is the reason why
Proposition 20 plays a very important role for our study.

13
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Proposition 19 Let ' : Rd ! (�1;+1] be a (�; )�semiconvex function. If we consider u0 2
Dom (') ; r0;M0 > 0, satisfying ' (u0 + r0v) � M0; 8 jvj � 1, then there exist �0 > 0 and b̂ � 0
such that

(32) �0jûj � hû; u� u0i+ b̂+ b̂(1 + jûj)ju� u0j2; 8(u; û) 2 @�':

Moreover there exist M � 0 and �0 2 (0; r0] such that

(33) jûj �M; 8u 2 B (u0; �0) � Dom (') and û 2 @�' (u) :

We present now a result that provides useful information regarding the functions '"; J" and
A", defined below, in a similar manner with the corresponding counterpart, found in the convex
framework, as we can see, for example, in Barbu [6, Chapter 1] or Brézis [38, Chapter II]. The
information will prove to be essential for the theorem which treats the existence of a solution for
our Cauchy problem.

Proposition 20 Let consider ' : Rd ! (�1;+1] a l.s.c. function and a; b; c � 0 be such that

' (v) + a jvj2 + b jvj+ c � 0; 8v 2 Rd:

If 0 < " <
1

2a
, then, for every u 2 Rd, there exists u" 2 Dom (') such that

(34)
1

2"
ju� u"j2 + ' (u") = inf

v2Rd

�
1

2"
ju� vj2 + ' (v)

�
=: '"(u):

Moreover, we obtain:
a) J" (u) := u" 2 Dom (@�') and A" (u) :=

1

"
(u� u") 2 @�' (u").

b) The following inequality holds, for all u 2 Rd, u0 2 Dom (') and 0 < " < 1
4a+1

,

(35) jJ" (u)� uj2 � 1

1� " (4a+ 1)
ju� u0j2 +

4"

1� " (4a+ 1)

�
� (juj) + b2 + '(u0)

�
;

where � (r) = ar2 + br+ c. In particular, J" and A" are globally sublinear functions for 0 < " � 1
4a+2

, i.e.

jJ"(u)j � C(1 + juj); jA"(u)j �
C

"
(1 + juj); 8u 2 Rd, where C = C(a; b; c; u0):

Moreover, if u 2 B (u0; r0), r0 > 0, then

jJ" (u)� uj � r0 +
p
"C0p

1� " (4a+ 1)
;

where C0 = 2
p
� (r0 + ju0j) + b2 + '(u0). Also, taking u = u0 in (35) it follows

(36)
(b1) lim"!0 J" (u0) = u0; 8u0 2 Dom (') ;
(b2) Dom (@�') is dense in Dom (') ;

(b3) Dom (@�') = Dom ('):

14
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c) In addition to its lower semicontinuity property, we suppose now that ' is a (�; )�semiconvex func-
tion. We fix u0 2 Dom(') and �0 > 0. If

(37)
(i) 0 < r0 � �r0 :=

1

36

�
�0

1 + �0

�2
1

(1 + (�+ )�0)
2 ;

(ii) 0 < " � �"0 :=
1

4a+ 2
^ 1� r0
4a+ 1

^pr0 ^
r20

1 + C20
;

where C0 = 2
p
� (r0 + ju0j) + b2 + '(u0), then, for all u; v 2 B (u0; r0), it follows

(38)
(c1) jJ" (u)� J" (v)j � (1 + (�+ )�0) ju� vj ;

(c2) jA" (u)� A" (v)j �
2 + (�+ )�0

"
ju� vj :

In particular, the minimizing point J" (u) (= u") of infv2Rd
�
1
2"
ju� vj2 + ' (v)

	
is unique for 0 < " �

�"0 and u 2 E�r0(D) (we denoted D := Dom (')); also, '" 2 C1(E�r0(D)) and r'" (u) = A" (u) =
1

"
(u� J"u) 2 @�' (J"u). Moreover, r'" and J" are Lipschitz on every bounded subset of E�r0(D) and

(c3) int (Dom (')) = int (Dom (@�')) :

2.3.2 Multivalued differential equations with oblique subgradients. Main results

We study for the beginning the following Cauchy problem

(39) x0 (t) +H (t; x (t)) @�' (x (t)) 3 g (t; x(t)) ; a.e. t 2 [0; T ] ; x (0) = x0 2 Dom (') ;

with an arbitrary fixed T > 0; g : R+ � Rd ! Rd is a Carathéodory function, which satisfies

(Hg) :

(
i) 8N > 0; 9GN � 0 : jg(t; x)� g(t; y)j � GN jx� yj ; 8 jxj ; jyj � N;

ii) 9L1; L2 2 L1(0; T ;R+); s.t. jg(t; x)j � L1(t) + L2(t) jxj ; 8x 2 Rd; a.e. t 2 [0; T ]

and

(H') : ' : Rd ! (�1;+1] is a proper, lower semicontinuous, (�; )� semiconvex function,

The matrix H(�; �) = (hi;j(�; �))d�d and its inverse [H (�; �)]�1 are from C1;2b
�
[0; T ]� Rd;Rd�d

�
1 and

satisfy similar assumptions (HH) to the ones found in the convex case.

Definition 21 A pair (x; h) of functions x; h : [0; T ] �! Rd is a solution of the oblique reflected problem
(39) (and we will write (x; h) 2 OR (H@�';x0; g)) if

(40)

8>>><>>>:
i) x (t) 2 Dom ('), 8t � 0; x 2 C([0; T ] ;Rd) and h; ' (x) 2 L1

�
0; T ;Rd

�
;

ii) x (t) +

Z t

0

H (r; x (r))h (r) dr = x0 +

Z t

0

g (r; x(r)) dr; 8t 2 [0; T ] ;

iii) h (t) 2 @�' (x (t)) ; a:e: t 2 [0; T ] :
1A matrix G = (gij)d�d 2 C1;2b

�
[0; T ]� Rd;Rd�d

�
if gij : [0; T ] � Rd ! R are functions of class C1;2 and there

exists a positive boundedness constant CG such that jgij(t; x)j+ j @@tgij(t; x)j+ jrxgij(t; x)j+ jD
2
xxgij(t; x)j � CG; for

all (t; x) 2 [0; T ]� Rd; 8i; j 2 1; d.

15
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We focus our attention on the main results on multivalued nonconvex ODEs. We first prove
the uniqueness of the solution. The existence result is more technical; it is divided into four parts.
First, one constructs a suitable sequence of approximating equations and, using a localization
technique, we obtain the convergence of its sequence of solutions. Passing to the limit we obtain
a local solution for the initial generalized evolution equation. Finally, by imposing an additional
assumption regarding the Dom ('), we study the extension to a global solution.

Uniqueness; properties of the solution

Theorem 22 Let the assumptions (H') ; (Hg) and (HH) be satisfied. Then the generalized nonconvex
differential system with oblique subgradients (39) admits a unique solution (x; h) in the sense of Definition
21. Moreover, if (x; h) 2 OR (H@�';x0; g) and (x̂; ĥ) 2 OR (H@�';x0; ĝ) then

(41) jx (t)� x̂ (t) j � CeCU(t)
�
jx0 � x̂0j+

Z t

0

jg (r; x(r))� ĝ(r; x(r))jdr
�
; 80 � t � T;

where U (t) =
R t
0
jx (r) jdr+

R t
0
jx̂ (r) jdr+ (1 + )

R t
0
jh (r)j dr+ (1 + )

R t
0
jĥ (r) jdr+ 2�t+GN t, with

N � jjxjjT _ jjx̂jjT and C is a constant depending only on LH and cH .

Existence of the solution

Theorem 23 (Local existence) Consider x0 2 Dom (') and let the assumptions (H') ; (Hg) and (HH)
be satisfied. Then, there exists T � 2 (0; T ] and a pair of functions (x; h) 2 C([0; T �] ;Rd)� L2(0; T �;Rd)
which is a solution of problem (39) on [0; T �].

Theorem 24 (Global existence) Under the assumptions of Theorem 23, if we suppose, in addition, that
Dom(') is bounded and closed, then there exists a pair of functions (x; h) 2 C([0; T ] ;Rd)� L2(0; T ;Rd)
which is a solution of problem (39) on the entire time interval [0; T ].

We can generalize the results we have just obtained by extending our analysis for local semi-
convex sets and local semiconvex functions. We first update Definition 15 and Definition 18, as
follows.

Definition 25 We say that a non-empty set E � Rd is locally semiconvex if there exists a non-decreasing
function  : R+ ! R+ such that, for all x 2 Bd (E), jxj � R, there exists x̂ 2 Rdnf0g such that

hx̂; y � xi � (R) jx̂j jy � xj2 ; 8y 2 E; jyj � R:

Definition 26 We say that the function ' : Rd ! (�1;+1] is a locally semiconvex function if there
exist non-decreasing functions �;  : R+ ! R+ such that int (Dom (')) = Dom (') is locally semiconvex
( being the function from Definition 25), Dom (@�') 6= ; and, for every R � 0, (u; u�) 2 @�' and
v 2 Rd, satisfying juj � R, jvj � R, we have

hu�; v � ui+ ' (u) � ' (v) + (�(R) + (R) ju�j) jv � uj2 :

16
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Concerning the existence and uniqueness of a solution for Eq.(39) under these new assump-
tions the results follow the same lines that we presented when we worked with the global semi-
convexity hypothesis. The uniqueness results is identical with Theorem 22 since the localization
will be made for R = jjxjjT _ jjx̂jjT , where x; x̂ are two supposed solutions of the equation. For
the existence of a solution we will state below an adapted result, Theorem 23 and Theorem 24
becoming one.

Theorem 27 Consider ' : Rd ! (�1;+1] a proper, l.s.c., locally semiconvex function and let the
assumptions (Hg) and (HH) be satisfied. For every initial datum x0 2 Dom (') and each R > jx0j there
exists T1 > 0 and a pair of functions (x; h) 2 C([0; T1];Rd)� L2(0; T1;Rd) which is a solution of problem
(39) on [0; T1]. Moreover, x(t) 2 Dom (') \ B(0; R), 8t 2 [0; T1]. If, in addition, Dom (') is closed and
the maximal local solution of (39) is bounded, then it is a global solution on the entire interval [0; T ].

2.3.3 A nonconvex Skorokhod problem with generalized reflection

Setting the problem
In this section we consider a generalized Skorokhod problem, driven by Fréchet oblique re-

flected subgradients. This Cauchy problem can be, formally, written as:

(42)

(
dx (t) +H(t; x(t))@�' (x (t)) (dt) 3 g(t; x(t))dt+ dm (t) ; a.e. t � 0;
x (0) = x0 2 Dom(');

where m 2 C
�
R+;Rd

�
, m (0) = 0 and with the assumptions (HH), (Hg) and (H') imposed in

Section 2.3.2 still holding.

Definition 28 A pair (x; k) of continuous functions x; k : R+ ! Rd is a solution of equation (42) (and
we will write (x; k) 2 GSP (H@�';x0; g;m)) if

(43)

8>>>>>>>>>>><>>>>>>>>>>>:

i) x (t) 2 Dom ('); 8 t � 0 and ' (x (�)) 2 L1loc (R+) ;
ii) k 2 BVloc

�
R+;Rd

�
; k (0) = 0,

iii) x (t) +

Z t

0

H(r; x(r))dk (r) = x0 +

Z t

0

g(r; x(r))dr +m (t) ; 8t � 0;

iv)

Z t

s

hy (r)� x (r) ; dk (r)i+
Z t

s

' (x (r)) dr �
Z t

s

' (y (r)) dr

+

Z t

s

jy (r)� x (r)j2 (�dr + d lklr) ; 80 � s � t; 8y : R+ ! Rd continuous.

In order to have the uniform boundedness and the continuity of the solution for the general-
ized Skorokhod problem we should introduce some additional assumptions regarding the geo-
metrical properties of Dom ('). They are useful for obtaining the results found also in the convex
framework. Let us introduce the notion of drop of vertex x and running direction v. Let x; v 2 Rd
and r > 0. The closed convex hull

Dx (v; r) := conv
n
fxg [B (x+ v; r)

o
=
n
x+ t (u� x) j u 2 B (x+ v; r); t 2 [0; 1]

o
is called (jvj ; r)-drop of vertex x and running direction v. Remark that, if jvj � r, then Dx (v; r) =

B (x+ v; r).

17
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Definition 29 The set E � Rd satisfies the uniform interior drop condition if there exist r0; v0 > 0 such
that for all x 2 E there exists vx 2 Rd with jvxj � v0 and

Dx (vx; r0) � E

(we also say that E satisfies the uniform interior (v0; r0)-drop condition).

Proposition 30 If the set E, with its interior non-empty, satisfies the uniform interior (v0; r0)-drop condi-
tion then E satisfies the shifted uniform interior ball condition ((; �; �)�SUIBC or �SUIBC, for short).
More precisely, there exist  � 0 and �; � > 0, such that, for every y 2 E, there exist �y 2 (0; 1] and
vy 2 Rd; jvyj � 1 satisfying

(44)
(i) �y � (jvyj+ �y)

2  � �;

(ii) B (x+ vy; �y) � E; 8x 2 E \B (y; �):
We enhance now assumption (H') concerning the l.s.c., semiconvex function ' by considering

the following new hypothesis, which will be used furthermore:
(45)

(H') :

8><>:
i) ' : Rd ! (�1;+1] is a proper, lower semicontinuous, semiconvex function,
ii) 9K > 0 such that j' (x)� ' (y)j � K +K jx� yj ; 8x; y 2 Dom('),
iii) Dom (') is bounded and it satisfies the  � SUIBC.

Existence and uniqueness of the solution of the Skorokhod problem
We first prove the uniqueness of the solution.

Theorem 31 Suppose that hypotheses (HH) ; (Hg) and (H') hold. If m 2 BVloc(R+;Rd) then the
nonconvex Skorokhod problem with oblique subgradients (42) admits at most one solution (x; k) in the
space C(R+;Rd) �

�
C(R+;Rd) \BVloc(R+;Rd)

�
. Moreover, if (x; k) 2 GSP (H@�';x0; g;m) and

(x̂; k̂) 2 GSP(H@�'; x̂0; g; m̂), then

(46) jx (t)� x̂ (t) j � CeCV (t) [jx0 � x̂0j+ lm� m̂lt] ; a.e. t � 0,
where V (t) = lxlt + lx̂lt + (1 + ) lklt + (1 + ) lk̂lt +2�t+GN t, with N � jjxjjT _ jjx̂jjT and C is
a constant depending on LH and cH .

We can advance now to the part treating the existence of a solution for Eq.(42).

Proposition 32 Let the assumptions (HH) and (H') be satisfied and (x; k) 2 GSP (H@�';x0; 0;m).
Then, there exists a positive constant CT (kmkT ) = C(x0; LH ; cH ; K; T; kmkT ), increasing function with
respect to kmkT , such that, for all 0 � s � t � T ,

(47)
(a) kxkT + lklT � CT (kmkT ) ;
(b) jx (t)� x (s)j+ lklt � lkls � CT (kmkT )

p
t� s+mm (t� s):

We are now able to provide the result which assures the existence of a solution for the Sko-
rokhod equation (42).

Theorem 33 Suppose that hypotheses (HH � i & ii), (Hg � i & ii), (H' � i; ii & iii) hold and let
m 2 C

�
R+;Rd

�
, m (0) = 0. Assume also that, for T > 0,Z T

0

(g#(t))2dt < +1; where g#(t) := sup
x2Dom(')

jg(t; x)j:

Then the nonconvex Skorokhod problem (42) admits a unique solution (x; k) 2 GSP (H@�';x0; g;m), in
the sense of Definition 28.

18
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2.3.4 Applications. SVIs with oblique Fréchet subgradients

In order to consider general stochastic variational inequalities with oblique Fréchet subgradients,
we first present a problem which makes, in fact, the transition from the (deterministic) Skorokhod
problem analyzed in the previous section to its stochastic counterpart. The approach follows the
same stapes like the ones developed in the convex framework.
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2.4 Obstacle problems for parabolic SDEs with Hölder continuous diffusion

2.4.1 Problem formulation. Main assumptions

Our research is devoted to a qualitative analysis (existence and uniqueness results, asymptotic
behavior and a maximum principle for the strong solution) of the following stochastic variational
inequality, considered in a infinite-dimensional setting and featuring weak assumptions on the
coefficients:2

(48)8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

(i) u 2 Lpad(
� (0; T );V ) \ L2ad(
;C([0; T ];H));
(ii) u(!; t) 2 K(t); 8t 2 [0; T ]; P�a:s: ! 2 
;
(iii) there exists k 2 L2ad(
;C([0; T ];H)),

a H-valued bounded variation stochastic process, such that,

u(t) + k(t) = u0 +

Z t

0

A(r; u(r))dr +

Z t

0

g(r; u(r))dWr; for all t 2 [0; T ] , P�a:s: ! 2 
;

(iv)

Z t

s

hv (r)� u(r); dk(r)i � 0; P�a:s:, 8v 2 C([0; T ];H), v (r) 2 K(r) for all r 2 [0; T ] ;

for all s; t 2 [0; T ] ; s � t;

(v) u(0; x) = u0(x) in D;

where D � RN is an open bounded set, with its smooth frontier � (for example, of class C2). Also,
notice that conditions (ii� iv) can be written, formally, in the equivalent variational form, as:3

(ii0) du(t) + A(t; u(t))dt+ @IK(t)(u(t))dt 3 g(t; u(t))dW (t):

Consider H = L2(D) and let V be a separable reflexive Banach space, with continuous dense
embedding in H , such that, for all u 2 V , u+ 2 V , where u+(x) := maxfu(x); 0g. In addition,
we assume the following assumption on V : for every Lipschitz function � 2 C1(R), satisfying
�(0) = 0, we have, for all v 2 V ,

(49) �(v)(�)(:= �(v(�))) 2 V and k�(v)kV � C(1 + kvkV ):

Denote by j � j2; k � kV and k � kV � , respectively, the norms from H; V and V �, respectively; hv�; vi
is the duality between V � and V , while (�; �) represents the inner product from H . Moreover, for
v 2 Lr(D) and u 2 Lq(D), 1

r
+ 1

q
= 1, r; q � 1, let (v; u) =

R
D
v(x)u(x)dx. The usual norm in Lr(D)

is given by j�jr. Finally, for k; r; s 2 N, denote by Hk(D), Hk
0 (D) and Hs;r((0; T )�D), respectively,

the usual Sobolev spaces on D and (0; T )�D, respectively.
Introduce now the assumptions on Eq.(48) in a manner which will cover both the Lipschitz

and the Hölder continuity of the diffusion coefficient. Whenever it is necessary, we precise the
exact situation we deal with. In this manner, we present an unitary analysis, which recuperates
the known results for the Lipschitz continuity of the diffusion. In order to obtain the existence of

2The spaces L2ad(
;C([0; T ];H)) � L2(
;C([0; T ];H)) and Lpad(
 � (0; T );X) � Lp(
 � (0; T );X), 1 � p < 1,
withX = H or V , represents the closed linear subspaces of the non-anticipatives stochastic processes, adapted to the
stochastic basis introduced in hypothesis (H3).

3The function IK(t)(u) = 0 if u 2 K(t) and +1 if u 2 H nK(t) is the convexity indicator function of the set K(t)
and the maximal monotone graph @IK(t) is its subdifferential operator, which is given by @IK(t)(u) = fu� 2 H :
(u�; v � u) � 0; 8v 2 K(t)g = fu� 2 H : u�(x) 2 @IK(t;x)(u(x)) a.e.g:
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an weak variational solution, some specific hypothesis will be given at the beginning of Section
2.4.4.
H1 : Let p > 1 and A (t; �) : V ! V �, t 2 [0; T ] verifying, for every u; v; w 2 V ,

(i) there exist �;  > 0 and �; �1; � 2 R such that

i1) hA(t; u); ui+ �1juj22 + � � kukpV a.e. t 2 (0; T );
i2) hA(t; u); b(u)i+ �1(1 + jb(u)j2)(1 + jA(t;  )j2 + k kV + kukV ) � 0, a.e. t 2 (0; T ), for every
increasing function b 2 C1(R) satisfying b(V ) � V and every  2 V such that b( ) = 0 and
A(t;  ) 2 V ;

i3) hA(t; u)�A(t; v); b(u�v)i+�(u�v; b(u�v)) � 0, a.e. t 2 (0; T ), for every increasing func-
tion b 2 C1(R) satisfying b(V ) � V and b(0) = 0; remark that (i2) appears as a consequence
of (i1)&(i3) if p = 2.

i4) kA(t; u)kV � � �(1 + kukp�1V ), a.e. t 2 (0; T ).
(ii) � 7�! hA(t; u+ �v); wi : R! R is continuous, a.e. t 2 (0; T ).
(iii) t 7�! A(t; u) : [0; T ]! V � is Lebesgue measurable on [0; T ].

H2 : g : [0; T ] � D � R ! R is measurable and there exist L;M > 0 and � 2 [1=2; 1] such that,
8r; q 2 R, a.e. (t; x) 2 [0; T ]�D,

jg(t; x; r)� g(t; x; q)j � Ljr � qj� and jg(t; x; r)j �M(1 + jrj):

H3 : (
;F ;P; (Ft)t�0) is a complete filtered probability space (a stochastic base) and W is a H-
valued Wiener process, with the covariance operator Q 2 L1(H) (Q is a nuclear operator)4 and q
the kernel of Q. Assume Tr (q) 2 L�1 (D), where

�1 =

(
1

1�� ; if � 2 [1=2; 1)
+1; if � = 1:

Recall that the operator Q 2 L (H) is defined by

E [(W (t)�W (s) ; h) (W (t)�W (s) ; k)] = (t� s) (Qh; k) ; 8 0 � s � t; h; k 2 H;

H4 : Let  1;  2 : [0; T ] � D ! R, satisfying  1;  2 2 H1;2((0; T ) � D) \ Lp(0; T ;V ),  1(t; x) �
 2(t; x), 8(t; x) 2 [0; T ]�D and consider the time-dependent constraints set characterized by:

K(t) = fh 2 H : h(x) �  1(t; x); a.e. x 2 Dg =: [[ 1(t);+1)) or
K(t) = fh 2 H : h(x) �  2(t; x); a.e. x 2 Dg =: ((�1;  2(t)]] or
K(t) = fh 2 H :  1(t; x) � h(x) �  2(t; x); a.e. x 2 Dg =: [[ 1(t);  2(t)]]:

4A linear operatorQ, defined over a separable Hilbert spaceH (with the inner product (�; �) and the endowed norm
j � jH ), is compact if Q maps any bounded set of H to a relatively compact set of H (Q maps any weakly convergent
sequence inH to a strongly convergent sequence inH). Q is a nulcear operator if (Q�Q)1=2 is a non-negative operator
with finite trace i.e. for some (and hence all) orthonormal bases feigi of H , the sum kQk1 := Tr

h
(Q�Q)

1=2
i
=P1

i=1((Q
�Q)

1=2
ei; ei) is convergent. The space of the nuclear operators, equipped with the norm k�k1, is L1(H). Let

now L2(H) be the space of bounded operators with finite Hilbert-Schmidt norm kQk2 := Tr(QQ�) =
P1

i=1 jQeij2H .
The Hilbert-Schmidt operators are nuclear operators. Denote L2Q(H) = fv 2 L(H) : vQ1=2 2 L2(H)g and jjvjj2Q :=P1

i=1 jvQ1=2eij2H = Tr(vQv�).
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Moreover, suppose there exist �1; �2; �3 2 H1;0((0; T )�D), �i � 0 a.e., 8i = 1; 2; 3, �3 � 1 a.e., such
that  2 Lp(0; T ;V ) \H2;0((0; T )�D) and A( ) 2 L2((0; T )�D), where

(50)  :=

8><>:
 1 + �1; if K(t) = [[ 1(t); +1))
 2 � �2; if K(t) = ((�1;  2(t)]]

(1� �3) 1 + �3 2; if K(t) = [[ 1(t);  2(t)]]

H5 : u0 2 L2(
;F0;P;H) and P-a.s., u0 2 K(0) 2 f[[ 1(x);+1)); ((�1;  2(x)]]; [[ 1(x);  2(x)]]g,
depending on the case ( i(x) :=  i(0; x), i 2 f1; 2g).

Finally, we add some additional working hypothesis. We first analyze the problem under the
hypotheses (H6 � (i)) and, in Section 2.4.3, we obtain, along with the uniqueness of the solution,
the existence of an absolutely continuous feedback process k. In Section 2.4.4 we renounce at the
mentioned assumption (H6 � (i)) and we provide the existence of an weak-variational solution
for the problem.
H6 :
(i) g(t; x;  1(t; x)) = g(t; x;  2(t; x)) = 0, 8(t; x) 2 [0; T ]�D:

(ii) If g is Hölder continuous, with the Hölder exponent � 2 [1=2; 1), we suppose that V is a
Hilbert space, continuously densely embedded into H and:

a)A(t; u) = A(u) := A0(u)+Â0(u), withA0 2 L(V; V �), Â0 : H ! H is a continuous operator.
The operator A(u) verifies (H1), with p = 2.

b) g(t; x; r) � g(x; r),  i(t; x) �  i(x); i 2 f1; 2g, K(t) � K � H .

c) u0(!; x) = u0(x), P� a:s:, u0 2 K.

d)  i;  2 V , A( ) 2 H .

Let G(t; u), u 2 H , t 2 [0; T ] be the linear operator G(t; u) : Dom(G(t; u)) � H ! H given by:

(51)

(
(i) (G(t; u)h)(x) = g(t; x; u(x))h(x)

(ii) Dom(G(t; u)) = fh 2 H : G(t; u)h 2 Hg; 8t 2 [0; T ]:

2.4.2 Framework for the existence and uniqueness results

We first present a result which offers useful regularizations of the term characterizing the ob-
stacle. Following the suggestions from Barbu [6, Chapter 2], given a maximal monotone graph
� � R� R, we introduce the mollifier approximation �" 2 C1(R) of its Yosida approximation
�" : R! R, which is given as the unique solution of the inclusion �"(r) 2 �(r � "�"(r)). More
precisely, for � 2 C10 (R), with

R
R�(�)d� = 1, �(�) = �(��) � 0, 8� 2 R and �(�) = 0, for all j�j � 1,

the 1="-Lipschitz function �" : R! R is defined by

�"(r) :=

Z 1

�1
�"(r � "2�)�(�)d� �

Z 1

�1
�"(�"2�)�(�)d�:

Before advancing to the core of this section, we present the Itô’s formula, adapted to the current
infinite dimensional setting. For more details, the interested reader is invited to consult Pardoux
[130, Theorem 4.2.] (the study is focused on the Lipschitz diffusion setup) or Viot [168, Theorem
1.3] (the results are obtained under a Hölder assumption for the diffusion).
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2.4.3 The case of an absolutely continuous feedback process

Theorem 34 Suppose that the hypothesis (H1-H6) hold. Then there exists a unique pair of stochastic
processes (u; h) 2 [Lpad(
 � (0; T );V ) \ L2ad(
;C([0; T ];H))]� L2ad(
 � (0; T );H) such that, for all
t 2 [0; T ], P-a:s:,

(52)

8<:
(i) u(t) 2 K(t); (ii) h(t) 2 @IK(t)(u(t)) a:e: in 
� (0; T );

(iii) u(t) +

Z t

0

A(s; u(s))ds+

Z t

0

h(s)ds = u0 +

Z t

0

G(s; u(s))dW (s);

the equality (52-iii) taking place in V �. In addition, if (u1; h1) and (u2; h2), respectively, are the solutions
corresponding to the initial data u01 and u02, respectively, then, for every 0 � s � t � T ,
� for 1=2 � � � 1,

(53) E(ju1(t)� u2(t)j1jFs) � e�(t�s)ju1(s)� u2(s)j1, P-a:s:,

� for � = 1 we have

(54)

(
(i) E(ju1(t)� u2(t)j22jFs) � ju1(s)� u2(s)j22e(t�s)(�+

L2

2
jTrqj1), P-a:s:,

(ii) E
�
supt2[0;T ] ju1(t)� u2(t)j22

�
� 4E(ju01 � u02j22)C(T );

where C(T ) = exp(T (4j�j+ 14L2jTrqj1)).

2.4.4 Weak variational solutions

We weaken now the assumptions on the barriers  1 and  2 by giving up to the hypothesis (H6 �
(i)). Moreover, in the same spirit of (H6 � (iia)), assume A(t; u) := A0(u) � F (t; u), with A0 2
L(V; V �); A0 = A�0, hA0(v); vi � �0 jjvjj2V ; 8v 2 V (�0 > 0) and F (t; �) : V ! H; 8t is Lipschitz and
has sublinear growth with respect to the second variable. Moreover, assume that the embedding
V � H is a compact one. Denote by WF(
 � (0; T ) ;K) the space of adapted (with respect to F)
stochastic processes v 2 L2ad(
;C([0; T ] ;H)) \ L2ad(
 � (0; T ) ;V ) of the form v(t) = v0 + �(t) +R t
0
~v(s)dW (s), with v0 2 H , � 2 L2ad(
;C([0; T ] ;V

�)); � (0) = 0, k�kBV ([0;T ];H) < +1 P�a:s: and
~v 2 L2ad(
� (0; T ) ;L2Q(H)), such that v(!; t) 2 K, P-a.s., for all t 2 [0; T ] :

Let us construct the operator

H(v; u) =
1

2
Ejv0 � u0j22 + E

Z T

0

hv(r)� u(r); A0(u(r))� F (r; u(r))i dr

+E
Z T

0

hv(r)� u(r); d�(r)i+ 1
2
E
Z T

0

Tr(~v(r)� eG(u(r)))Q(~v(r)� eG(u(r)))dr:
and propose the following definition for the notion of weak variational solution. For more details
on the notion of stochastic weak variational solutions, the reader can consult the pioneering work
on this topic from Răşcanu [143], Bensoussan, Răşcanu [15] and, also, some more recent studies
given by Maticiuc, Răşcanu [122] and Pardoux, Răşcanu [136] where this type of solutions for
backward SDEs is addressed.
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Definition 35 A collection (�
; �F ; �P; �F = ( �Ft)t�0; �W; �u) is an weak variational solution for Eq.(48) if the
following hold:

(55)

8>>><>>>:
(i) �W is a H-valued Wiener process on (�
; �F ; �P; �F), with its covariance Q,
(ii) �u 2 L2ad(�
� (0; T ) ;V );
(iii) �u(t) 2 K, �P-a.s., a.e. t 2 (0; T )
(iv) H(v; �u) � 0, for every v 2 W �F(�
� (0; T ) ;K).

We formulate the main statement of this section. The proof is based on tightness results and
on the suitable choice of the working space.

Theorem 36 Suppose that the embedding V � H is a compact one. Under the hypothesis (H1-H5 and
(H6 � (ii))), the problem (48) admits at least one weak variational solution, in the sense of Definition 35.

2.4.5 Behavior of the strong solution

We present below a qualitative analysis of the solution for our obstacle problem. We provide a
maximum principle and we investigate the exponential stability of the strong solution.

A maximum principle
We first give some conditions for the existence of a unique strong solution u 2 L2ad(
;C([0; T ];H))\

Lpad(
� (0; T );V ) for the following problem

(56)
�
du(t) + A(t; u)dt = g(t; u)dW (t); P-a:s:, in (0; T )�D;
u(0) = u0; P-a:s:, in D; u(t) 2 K(t); 8t 2 [0; T ]; P-a:s:

Problem (56) is equivalent with finding a solution for (52), with its second component h = 0. We
situate our research in the framework of Section 2.4.1.

Case K(t) = [[ 1(t);+1)). We have the following existence and uniqueness result.

Theorem 37 Suppose that all hypothesis (H1) to (H6) hold and, moreover,A( 1) � 0, P-a:s:, a.e. in (0; T )�
D. Then, the problem (56) admits a unique solution

u 2 Lpad(
� (0; T );V ) \ L2ad(
;C([0; T ];H)):

We provide similar results for the cases K(t) = ((�1;  2(t)]] and K(t) = [[ 1(t);  2(t)]].

Mean exponential stability
We first remark that, for every T > 0, there exist a unique adapted stochastic process u : 
 �

[0;+1)! H , such that uj[0;T ] is a solution of the problem (52).

Theorem 38 Under the hypothesis (H1) to (H6), the following estimates hold:
I. If 1=2 � � � 1, we have:

(57)

8>>>>><>>>>>:

(i) E(ju1(t)� u2(t)j1jFs) � e�(t�s)ju1(s)� u2(s)j1, 0 � s � t

(ii) E
�Z t

0

ju1(s)� u2(s)j1ds
�
� e�t � 1

�
Eju01 � u02j1

(iii) E
�Z 1

0

ju1(s)� u2(s)j1ds
�
� �1

�
Eju01 � u02j1; for � < 0
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II. If � = 1, denote ~C := �+ L2

2
jTrqj1 and we have:

(58)8>>>>>>>><>>>>>>>>:

(i) E(ju1(t)� u2(t)j22jFs) � ju1(s)� u2(s)j22e
~C(t�s)

(ii) E
�Z t

0

ju1(s)� u2(s)j22ds
�
� e

~Ct � 1
~C

Eju01 � u02j22

(iii) E
�Z 1

0

ju1(s)� u2(s)j22ds
�
� 1

j ~Cj
Eju01 � u02j22; if ~C < 0

(iv) E supt2[0;T ] ju1(t)� u2(t)j22 � C(T )Eju01 � u02j22; C(T ) := 4 expT (4j�j+ 14L2jTrqj1):

Conclusion 39

1. If � < 0, then the solutions are exponentially stable in expectation and, for � = 1, �+ L2

2
jTrqj1 < 0,

they are exponentially stable in quadratic mean.

2. If � < 0, then ju1(t)� u2(t)j1 is a supermartingale, due to the inequality (53-i):

E(ju1(t)� u2(t)j1jFs) � ju1(s)� u2(s)j1; 80 � s � t; P-a:s:

If � = 1 and � + L2

2
jTrqj1 < 0, then ju1(t) � u2(t)j22 is a supermartingale, due to the inequality

(54-i).

3. From Doob’s convergence theorem and (57-i), with � < 0, it follows that

lim
t!1

ju1(t)� u2(t)j1 = 0; P-a:s:;

i.e., the solutions are asymptotic stable almost surely. From (58-i), with �+ L2

2
jtr qj1 < 0, we have

that
lim
t!1

ju1(t)� u2(t)j2 = 0; P-a:s:
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2.5 Parabolic variational inequalities with generalized reflecting directions

2.5.1 Preliminaries, notations and basic assumptions

If [a; b] is a real, closed interval andY is a Banach space, then we denote byLp (a; b;Y) ; C ([a; b] ;Y),
BV ([a; b] ;Y) and AC ([a; b] ;Y) the usual spaces of p-integrable, continuos,with bounded varia-
tion, and, respectively, absolutely continuous Y-valued function on [a; b]. By W 1;p([a; b];Y) we
shall denote the space of y 2 Lp(a; b;Y) such that y0 2 Lp(a; b;Y); where y0 is the derivative in the
sense of distributions. We denote by L (Y) the Banach space of linear operators A : Y ! Y, with
the norm kAkL(Y) := sup fkAykY : kykY = 1g.

Throughout this section we shall our work in the Gelfand triple framework. More precisely,
we consider two real separable Hilbert spaces V andH such that V � H �= H� � V�, with continu-
ous and dense embeddings, where V� denoted the dual of V. Moreover, assume that the inclusion
V � H is a compact one. The norm from V is denoted by jj�jj, the one from H is j�j and V� is en-
dowed with the norm jj�jj�. The scalar product ofH is (�; �) and the duality pairing between V and
V� is given by h�; �i. Let 1; 2 > 0 be some positive constants of boundedness, corresponding to
the above inclusions jjyjj� � 1 jyj � 2 jjyjj, 8y 2 V.

We study the following type of evolution equation, driven by oblique reflected subgradients,
as we can see below:

(59)
�
y0(t) + Ay(t) + �(t; y(t))@'(y(t)) 3 f(t; y(t));
y(0) = y0 2 H; t 2 [0; T ] ;

where:
(A') : ' : H! (�1;+1] is a proper, convex, lower semicontinuous function.
(AA) : A 2 L(V;V�), A = A� s.t., for some constants �0; �1 > 0, 8y 2 V; hAy; yi � �0 jjyjj2 and

(60) (Ay;r'"(y)) � ��1(1 + jr'"(y)j)(1 + jyj); 8y 2 D(AH):
Here D(AH) := fv 2 V : Av 2 Hg and AHv = Av, 8v 2 D(AH).
(Af ) : f : [0; T ]�H! H is a Carathéodory function.
(A�) : � : [0; T ]�H!L(H), such that (t; y) 7! �(t; y)h : [0; T ]�H! H is a continuous function,
for all h 2 H.
Assume also that there exist u0 2 V and û0 2 H such that (u0; û0) 2 @'. The above hypothesis
assure that problem (59) is well posed.

2.5.2 Existence and uniqueness of a solution

Concerning the Cauchy problem (59), we first prove the existence of at least one solution. For its
uniqueness we will renounce at the dependence on the state for the perturbing term � and we
consider some particular systems of PDEs. We assume (A'), (Af ) and (A�) still holding and we
enhance them by adding the additional hypothesis:

(H1
�)

(
(i) 8 (t; y) 2 [0; T ]�H, �(t; y) : H! H is a self-adjoint linear operator;
(ii) 9�0; �1 > 0 s.t., 8(t; y; h) 2 [0; T ]�H�H; �0 jhj2 � (�(t; y)h; h) � �1 jhj2 :

(H1
f ) jf(t; y)j � �1(t) + �2(t) jyj ; 8y 2 Dom('), a.e. t (for �1; �2 2 L2 (0; T ;R+) ).

(H1
') Dom(') \ V 6= ;:

Without losing the generality, for convenience only, we can suppose that '(y) � '(0) = 0, which
easily implies that 0 = '"(0) � '"(y), for every " > 0 and y 2 H.
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Existence of a solution
Define first the notion of solution for Eq.(59).

Definition 40 A pair of functions y; k : [0; T ]! H is a (strong) solution of the oblique reflected evolution
equation (59) if

(61)

(i) y 2 C([0; T ] ;H) \ L2(0; T ;V);
(ii) k 2 C([0; T ] ;H) \BV ([0; T ] ;H); k(0) = 0;

(iii) y(t) +

Z t

0

Ay(s)ds+

Z t

0

�(s; y(s))dk(s) = y0 +

Z t

0

f(s; y(s))ds;

(iv)

Z t

s

hz(r)� y(r); dk(r)i+
Z t

s

'(y(r))dr �
Z t

s

'(z(r))dr;8s � t; 8z 2 C([0; T ] ;H)

We provide now the main result of this section.

Theorem 41 Consider the hypothesis (A'), (Af ), (A�), (H1
f ), (H1

�) and (H1
') be satisfied. Then, the

evolution equation with oblique reflecting subgradients (59) admits at least one strong solution (y; k), in
the sense of Definition 40. Moreover, the feedback reflecting process k is an absolutely continuous one, that
is there exists h 2 L2(0; T ;H) such that k (t) =

R t
0
h(s)ds.

Parabolic variational inequalities. Uniqueness of the solution
In order to prove the uniqueness of a solution we restrict the study of the general problem (59)

and analyze a scenario given by the consideration of a particular system of multivalued PDEs.
For doing this, let D be a domain with a smooth frontier (for example, of class C2) from Rd,
H =L2(D;Rk) � (L2(D))k, V =H1

0 (D;Rk) � (H1
0 (D))

k and consider � : [0; T ] ! Rk�k, �(t) :=
diag(�1(t); :::;�k(t)), with �i 2 C1([0; T ] ;R). Assume also that 0 < c � �i(t) � C,

�� d
dt
�i(t)

�� � C,
for some positive constants c; C and for all t 2 [0; T ], i = 1; k. For a convex, proper, l.s.c. function
' : Rk ! (�1;+1], consider the semilinear system of multivalued parabolic PDEs:

(62)

8>><>>:
dui(x; t)

dt
��ui(x; t) + �(t)@'(u(x; t)) 3 f(t; u(x; t)), on Q := D � (0; T ), i = 1; k;

u(x; 0) = u0(x), on D;
u(x; t) = 0, on @D � (0; T );

where u = (u1; :::; uk) : D � [0; T ]! Rk and u0 2 H1
0 (D;Rk); f 2 L2(D � (0; T );Rk).

Theorem 42 Under the setup introduced above, there exists a unique solution for problem (62).
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3 Backward Stochastic Variational Inequalities

3.1 Multivalued BSDEs with oblique subgradients

3.1.1 Setting the problem

Let T > 0 be fixed and consider the backward stochastic variational inequality with oblique reflec-
tion (for brevity, BSV I (H (t; y) @'(y)), BSV I (H (t) @'(y)) or BSV I (H (y) @'(y)), respectively, if
the matrix H depends only on time or on the state of the system, respectively), P� a:s:,

(63)

8<: Yt +

Z T

t

H (s; Ys) dKs = � +

Z T

t

F (s; Ys; Zs) ds�
Z T

t

ZsdBs; t 2 [0; T ] ;
dKs 2 @' (Ys) (ds) ;

where (
;F ;P; fFtgt�0) is a stochastic basis and fBt : t � 0g is an Rk�valued Brownian motion.
Moreover, denoting Ft := FB

t = �(fBs : 0 � s � tg) _N , we assume the following.

(H1) The terminal datum � 2 L2(
;FT ;P;Rd).

(H2) H(�; �; y) : 
 � [0; T ] ! Rd�d is Ft�progressively measurable for every y 2 Rd; there exist
LH ; aH ; bH > 0 such that, P�a:s: ! 2 
, H = (hi;j)d�d 2 C

�
[0; T ]�Rd;Rd�d

�
and, for all

t 2 [0; T ] and y; ~y 2 Rd, P�a:s: ! 2 
,

(64)

8<:
(i) hi;j (t; y) = hj;i (t; y) ; 8i; j 2 1; d;
(ii) aH juj2 � hH (t; y)u; ui � bH juj2 ; 8u 2 Rd;
(iii) jH(t; ~y)�H (t; y)j � LH j~y � yj:

(H3) The function ' : Rd ! (�1;+1] is a proper lower semicontinuous convex function.

(H4) The generator function F (�; �; y; z) : 
 � [0; T ] ! Rd is Ft�progressively measurable for
every (y; z) 2 Rd � Rd�k and there exist L; ` 2 L2 (0; T ;R+) such that
(65)8>>><>>>:

(i) Lipschitz conditions: for all y; y0 2 Rd; z; z0 2 Rd�k; dP
 dt� a:e: :

jF (t; y0; z)� F (t; y; z)j � L (t) jy0 � yj, jF (t; y; z0)� F (t; y; z)j � ` (t) jz0 � zj;

(ii) Boundedness condition: E
Z T

0

jF (t; 0; 0)j2 dt < +1.

Definition 43 Given two functions x; g : [0;+1)! Rd we say that dg (t) 2 @' (x (t)) (dt) on R+ if, for
all T > 0,

(a) x 2 C([0; T ] ;Rd), g 2 BV ([0; T ] ;Rd); g(0) = 0;

(b)

Z T

0

' (x (t)) dt < +1; for all T � 0; and, for 8s � t, 8y 2 C([0; T ] ;Rd);

(c)

Z t

s

hy (r)� x(r); dg (r)i+
Z t

s

' (x (r)) dr �
Z t

s

' (y (r)) dr:

Let us now introduce the definition of solution for Eq.(63). For the case H (t; y) � H (t) we
obtain the existence of a strong solution while, for H (t; y) we obtain a weak solution for Eq.(63).
In second situation, the equation must be considered in a suitable way.
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Definition 44 Given (
;F ;P; fFtgt�0) a fixed stochastic basis and fBt : t � 0g anRk�valued Brownian
motion, we say that a triplet (Y; Z;K) is a strong solution for the BSV I (H (t) @'(y)) if

(Y; Z;K) 2 S0d [0; T ]� �0d�k (0; T )� S0d [0; T ] ;

such that, P� a:s: ! 2 
, K�(!) 2 BV ([0; T ] ;Rd) and8<: Yt +

Z T

t

H (s) dKs = � +

Z T

t

F (s; Ys; Zs) ds�
Z T

t

ZsdBs; 8t 2 [0; T ] ;

dKs 2 @' (Ys) (ds) :

Consider now the case when the matrix H depends also on the state of the system. Renouncing
at the dependence of F on the process Z, one can reconsider the BSVI with oblique reflection in
the following manner, P� a:s: ! 2 
,

(66)

8<: Yt +

Z T

t

H (s;Xs; Ys) dKs = g(XT ) +

Z T

t

F (s;Xs; Ys) ds� (MT �Mt) ; 8t 2 [0; T ] ;

dKs 2 @' (Ys) (ds) ;

where fXt : t 2 [0; T ]g is an Rk-valued progressively measurable continuous stochastic process,
g : Rk ! Rd is a continuous function and M is a continuous martingale (possible with respect to
its natural filtration if not any other filtration available). The role played by X is an appropriate
restriction of the !-dependence of H and F , which are now deterministic functions. Assume that:

(H 0
2) H : [0; T ]� Rk � Rd ! Rd�d is a continuous function which satisfies (64), uniformly with

respect to x 2 Rk;

(H 0
4) F : [0; T ] � Rk � Rd ! Rd is continuous function, for which there exists a constant L > 0

such that, for all t 2 [0; T ],

jF (t; x; y0)� F (t; x; y)j � Ljy0 � yj; for all y; y0 2 Rd and x 2 Rk:

Definition 45 If there exist a probability space (
;F ;P) and a quadruple (X; Y;M;K) : 
 � [0; T ] !
Rk � (Rd)3 such that

(a) M is a continuous martingale with respect to the filtration given by F = fFtgt2[0;T ];
Ft := FX;Y;M

t = �(fXs; Ys;Ms : 0 � s � tg) _N , t 2 [0; T ] ,
(b) X; Y;K are càdlàg stochastic processes, adapted to fFtgt2[0;T ],
(c) relation (66) is verified for every t 2 [0; T ] , P� a:s: ! 2 
,

then the collection (
;F ;P;F; X; Y;M;K) is called a weak solution of the BSV I(H(t; y)@'(y)).

We are able now formulate the main results of this section.

Theorem 46 Considering hypothesis (H 0
2); (H3) and (H 0

4) satisfied, the BSV I (H (t; y) @'(y)) (66) ad-
mits at least one weak solution (
;F ;P;Ft; Xt; Yt;Mt; Kt)t2[0;T ], in the sense of Definition 45. In addi-
tion, we can choose the process X as being a diffusion process from the class which places the problem
in a Markovian framework, the drift and the diffusion coefficients b and � being some given continuous
Lipschitz functions.
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In the case H(s; y) = H(s) (that is H is independent of the state), denoting

(67) �t =

Z t

0

L (s)
�
EFs j�jp

�1=p
ds and � = sup

t2[0;T ]

�
EFt j�jp

�1=p
;

we have the following result, which assures the existence of a strong solution.

Theorem 47 Let p � 2 and the assumptions (H1); (H2); (H3) and (H4) be satisfied. If l(t) � l <
p
aH ,

H 2 C1
�
[0; T ] ;Rd�d

�
and

(68) Ee�� + E j' (�)j < +1;

for all � > 0, then the BSV I (H (t) @'(y)) admits a unique strong solution (Y; Z;K) 2 S2d [0; T ] �
�2d�k (0; T )� S0d [0; T ]. Moreover, for all � > 0,

(69) E sup
s2[0;T ]

e�p�s jYsjp + E
�Z T

0

e2��s jZsj2 ds
�p=2

< +1

and there exists a positive constant C = C(aH ; bH ; LH), independent of the terminal time T , such that,
P� a:s: ! 2 
,

jYtj � C(1 +
�
EFt j�jp

�1=p
); for all t 2 [0; T ] :

In addition, the process K 2 S2d [0; T ] and it can be represented as

Kt =

Z t

0

Usds; with U 2 �2d (0; T ) and Us 2 @'(Ys), a:e: on [0; T ] , P� a:s: ! 2 
:

Finally, the following estimate holds:

(70) E sup
t2[0;T ]

jYtj2 + E
Z T

0

jUtj2dt+ E
Z T

0

jZtj2dt � C

�
Ej�j2 + E j' (�)j+ E

Z T

0

jF (t; 0; 0)j2dt
�
:

The proofs of the above results are detailed along the next sections. First, we focuse on the
construction of a sequence of approximating equations and a priori estimates of their solutions.
The estimates will be valid for both cases covered by Theorem 46 and Theorem 47. After this,
the proof is split between two sections, each one being devoted to the particularities brought by
Theorem 46 and Theorem 47.

3.1.2 Approximating problems and a priori estimates

In order to prove the existence of the solution (strong or weak) we can assume, without loosing
the generality, that ' (y) � ' (0) = 0:

Technical results
We first introduce, grouped under the form of a small section, some useful results which will

be used during the study.
We can now start, simultaneously, the proofs of Theorem 47 and Theorem 46 by obtaining

some a priori estimates for the solutions of the approximating equations.
Proof. Let p > 1.
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Step 1. Boundedness under the assumption

0 � ` (t) � ` <
p
a:

Consider an approximating BSDE, with its solution (Y "; Z") and denote U " = r'"(Y "). There
exists a positive constant C = C(a; b;�; l; L(�)), independent of ", such that

(71) E sup
s2[0;T ]

jY "
s j
2 + E

Z T

0

(jU "r j
2 + jZ"r j

2)dr � C

�
E j�j2 + E' (�) + E

Z T

0

jF (r; 0; 0)j2 dr
�
:

Step 2. Convergences under the assumption

0 � ` (t) � ` <
p
a:

The estimates of Step 1 imply that there exist a sequence f"n : n 2 N�g ; "n ! 0 as n!1, and six
progressively measurable stochastic processes Y; Z; U; F; �; h such that

Y "n
0 ! Y0; in Rd; Z"n * Z; weakly in L2(
� (0; T ) ;Rd�k);

and, weakly in L2(
� (0; T ) ;Rd),(
Y "n * Y; r'"n (Y "n)* U; H (�; Y "n)* h;

H (�; Y "n)r'"n (Y "n)* � and F (�; Y "n ; Z"n)* F:

The convergence Y "n * Y implies that, on the sequence f"n : n 2 N�g, J"n(Y "n) * Y; weakly in
L2(
� (0; T ) ;Rd). From the approximating BSDE we have that, at the limit,

Yt +

Z T

t

�sds = � +

Z T

t

Fsds�
Z T

t

ZsdBs:

The continuity of the three integrals from the above equation imply also the continuity of the
process Y , but the previous convergences are not yet sufficient to conclude that (Y; Z) is a solution
of the considered equation. The remaining problems consist in proving that, for every s 2 [0; T ],
P� a:s: ! 2 
,

�s = hsUs; hs = H(s; Ys); Us 2 @'(Ys) and Fs = F (s; Ys; Zs):

Starting with this point, the proofs of Theorem 47 and Theorem 46 will take two separate
paths.

3.1.3 Strong existence and uniqueness for H (t; y) � Ht

We will continue in this section the proof of Theorem 47.
Proof. We continue the proof of the existence of a solution. Under the assumptions of Step 3
(Section 3.1.2) we prove that fY " : 0 < " � 1g is a Cauchy sequence. We obtain that the triplet
(Y; Z;K) is the unique strong solution of the BSV I (H (t) ; '; F ).
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3.1.4 Weak existence for H (t; y)

We will continue in this section the proof of Theorem 46. All the a priori estimates obtained
in Section 3.1.2. remain valid. In Section 3.1.3. we proved that the approximating sequence
is a Cauchy sequence when the matrix H does not depend on the state of the system and, as a
consequence, we derived the existence and uniqueness of a strong solution forBSV I (H (t) ; '; F ).
In the current setup, allowing the dependence on Y we will situate ourselves in a Markovian
framework and we will use tightness criteria in order to prove the existence of a weak solution
for BSV I (H (t; y) ; '; F ).

First let b : [0; T ] � Rk ! Rk, � : [0; T ] � Rk ! Rk�k be two continuous functions satisfying
the classical Lipschitz conditions, which imply the existence of a non-exploding solution for the
following SDE

(72) X t;x
s = x+

Z s

t

b(r;X t;x
r )dr +

Z s

t

�(r;X t;x
r )dBr; t � s � T:

Let now consider the continuous generator function F : [0; T ]� Rk � Rd ! Rd and assume there
exist L 2 L2 (0; T ;R+) such that, for all t 2 [0; T ] and x 2 Rk,

(H 0
4) jF (t; x; y0)� F (t; x; y)j � L (t) jy0 � yj, for all y; y0 2 Rd;

Given a continuous function g : Rk ! Rd, satisfying a sublinear growth condition, consider now
the BSV I (H (t; y) ; '; F )

(73)

8<: Y t;x
s +

Z T

s

H(r; Y t;x
r )dKt;x

r = g(X t;x
T ) +

Z T

s

F (r;X t;x
r ; Y t;x

r )dr �
Z T

s

Zt;xr dBr; t � s � T;

dKt;x
r 2 @'(Y t;x

r ) (dr) ; for every r.

Consider now the Skorokhod space D([0; T ] ;Rm) of càdlàg functions y : [0; T ]! Rm (i.e. right
continuous and with left-hand side limit). It can be shown (see Billingsley [20]) that, although
D([0; T ] ;Rm) is not a complete space with respect to the Skorokhod metric, there exists a topo-
logically equivalent metric with respect to which it is complete and that the Skorokhod space is
a Polish space. The space of continuous functions C([0; T ] ;Rm), equipped with the supremum
norm topology is a subspace of D([0; T ] ;Rm); the Skorokhod topology restricted to C([0; T ] ;Rm)
coincides with the uniform topology. We will use on D([0; T ] ;Rm) the Meyer-Zheng topology,
which is the topology of convergence in measure on [0; T ], weaker than the Skorokhod topology.
The Borel ��field for the Meyer-Zheng topology is the canonical ��field as for Skorokhod topol-
ogy. Note that for the Meyer-Zheng topology, D([0; T ] ;Rm) is a metric space but not a Polish
space.

We continue now the proof of Theorem 46.
Proof. For any fixed n � 1 consider the following approximating equation, P� a:s: ! 2 
,

(74) Y n
t +

Z T

t

H (s; Y n
s )r'1=n (Y n

s ) ds = g(X t;x
T ) +

Z T

t

F (s;Xs; Y
n
s ) ds�

Z T

t

Zns dBs; 8t 2 [0; T ] :

We prove a weakly convergence in the sense of the Meyer-Zheng topology, that is the laws con-
verge weakly if we equip the space of paths with the topology of convergence in dt�measure. We
obtain a collection (�
; �F ; �P;F �Y ; �M

t ; �Yt; �Mt; �Kt)t2[0;T ] which is a weak solution of Eq.(73), in the sense
of Definition (45), and the proof is now complete.
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3.2 A numerical approximation scheme for multivalued BSDEs

3.2.1 Notations. Hypothesis. Preliminaries

We shall consider a finite horizon T > 0 and a complete probability space (
;F ;P) on which
is defined a standard d-dimensional Brownian motion B = (Bt)t�T whose natural filtration is
denoted F =fFt; 0 � t � Tg: The analyzed problem is considered in a Markovian framework, as
follows. Consider the following data for the forward continuous stochastic process:

� some continuous coefficient functions b : Rm ! Rm; � : Rm ! Rm�d; g : Rm ! Rn and
F : [0; T ] � Rm � Rn � Rn�d ! R; which satisfies the following standard assumptions: for
some constants � 2 R; L; �;  � 0 and for all t 2 [0; T ] ; x; ~x 2 Rm; y; ~y 2 Rn and z; ~z 2 Rn�d :

(75)

8><>:
(i) jb (x)� b (~x)j+ k� (x)� � (~x)k � L jx� ~xj ;
(ii) hy � ~y; F (t; x; y; z)� F (t; x; ~y; z)i � � jy � ~yj2 ;
(iii) jF (t; x; y; z)� F (t; x; y; ~z)j � � kz � ~zk ;

and there exist some constants M > 0 and p; q 2 N such that, for all t 2 [0; T ], x 2 Rm and
y 2 Rn :

(76) jg(x)j �M(1 + jxjq) and jF (t; x; y; 0)j �M(1 + jxjp + jyj):

� a proper convex lower semicontinuous function ' : Rn ! (�1;+1] satisfying, for M > 0
and r 2 N and all x 2 Rm :

(77) j'(g(x))j �M(1 + jxjr):

3.2.2 Approximations schemes for BSVIs

We consider a partition of [0; T ], � = fti = ih : 0 � i � ng, with h := T=n; n 2 N�; on
which we approximate the solution of the backward stochastic variational inequality. For the
numerical simulations of the forward part of the solution, the most standard approach consists
in approximating the SDE in a proper way on each interval [ti; ti+1] by the classical Euler scheme
(see, e.g. Kloeden, Platen [103]):(

Xh
ti+1

= Xh
ti
+ b

�
Xh
ti

�
h+ �

�
Xh
ti

� �
Bti+1 �Bti

�
; i = 0; n� 1

Xh
0 = X0:

The above numerical scheme is easy to implement since it requires only the simulation of d-
independent Gaussian variables for the Brownian increments, providing a weak error of h order.
For t 2 [ti; ti+1] let

Xh
t = Xh

ti
+ b(Xh

ti
) (t� ti) + �(Xh

ti
) (Bt �Bti) :

We shall analyze the one-dimensional BSDE, without losing the generality of the study. Using
the Yosida approximation r'" of the multivalued operator @', with " = ha and a 2 (0; 1=2) (the
way of choosing this constant will be detailed later), we deduce that the following approximate
equation

(78) Y h
t +

Z T

t

r'ha(Y h
r )dr = g(XT ) +

Z T

t

F (r;Xr; Y
h
r ; Z

h
r )dr �

Z T

t

Zhr dBr; 8t 2 [0; T ] ; P� a:s:;
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admits a unique solution
�
Y h
t ; Z

h
t

�
2 S21 [0; T ] � �21�d (0; T ) : We propose the following implicit

discretization procedure, which define the pair ( ~Y h; ~Zh) inductively, for i = n� 1; 0 :

(79)

8>>>>>><>>>>>>:

~Y h
T := g(Xh

T );
~ZhT = 0;

~Y h
ti
:= Ei;h( ~Y h

ti+1
) + h

h
F (ti; X

h
ti
; ~Y h

ti
; ~Zhti)�r'ha( ~Y

h
ti
)
i
;

~Zhti :=
1

h
Ei;h( ~Y h

ti+1
(Bti+1 �Bti));

~Uhti := r'ha(E
i;h( ~Y h

ti+1
));

where Ei;h (�) := E
�
� jFh

ti

�
and Fh

ti
:= �(Xh

tj
: 0 � j � i):

Remark 48 Observe that ~Y h
ti

is defined implicitly as the solution of a fixed point problem. Since the
involved functions are Lipschitz, it is well defined. Moreover, for small values of h > 0 it can be estimated
numerically in an accurate way.

Remark 49 We can also use an explicit scheme to define

~Y h
ti
:= Ei;h( ~Y h

ti+1
) + hEi;h

h
F (ti; X

h
ti
; ~Y h

ti+1
; ~Zhti)�r'ha( ~Y

h
ti+1
)
i
:

The advantage of this scheme is that it does not require a fixed point procedure but, from a numerical point
of view, adding a term in the conditional expectation makes it more difficult to estimate. Therefore the
implicit scheme can be more tractable in practice.

Consider now a continuous version of the approximating scheme (79). From the martingale
representation theorem there exists a square integrable process ~Zh such that

(80) ~Y h
ti+1

= Ei( ~Y h
ti+1
) +

Z ti+1

ti

~Zhs dBs;

and, therefore, we define, for t 2 (ti; ti+1];

(81) �Y h
t := ~Y h

ti
� (t� ti)

h
F (ti; X

h
ti
; ~Y h

ti
; ~Zhti)�r'ha( ~Y

h
ti
)
i
+

Z t

ti

~Zhs dBs:

To approximate Zht we use

�Zht :=
1

h
Ei
�Z ti+1

ti

Zhs ds

�
; t 2 [ti; ti+1)

rather than Zhti , which is the best approximation of Zh by adapted processes which are constant on
each interval [ti; ti+1): In order to prove an error estimate of the scheme first we use the solution�
Y h
t ; Z

h
t

�
t2[0;T ] of the approximating equation (78).

Proposition 50 Under the assumptions (75)-(77), there exists C > 0 such that

(82) sup
t2[0;T ]

EjYt � Y h
t j2 + E

Z T

0

jZt � Zht j2dt � C� (T ) ha;

where � (T ) := E
h
1 + jg(XT )j2 + jXT jr +

R T
0
F
�
0; Xh

s ; 0; 0
�
ds
i
:
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We have the following result.

Theorem 51 Under suitable assumptions, there exists the constant C > 0 which depends only on the
Lipschitz constants of the coefficients, such that:

(83) sup
t2[0;T ]

EjYt � ~Y h
t j2 + E

Z T

0

h
jYt � ~Y h

t j2 + jZt � ~Zht j2
i
dt � Cha^(1�2a):
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3.3 Anticipated BSVIs with generalized reflection

3.3.1 Setting the problem

Let T > 0 be arbitrary but fixed, (
;F ;P; fFtgt�0) be a complete stochastic basis and fBt : t � 0g
an Rk–valued Brownian motion. Set Ft := �(fBs : 0 � s � tg) _ NP Our aim is to study the
existence and uniqueness of the backward stochastic variational inequality with oblique reflection
and with generators depending not only the present values of the solutions but also the future:

(84)

(
�dYt +H (t) @' (Yt) dt 3 f

�
t; Yt; Zt; Yt+�(t); Zt+�(t)

�
dt� ZtdBt t 2 [0; T ] ; ;

Yt = �t ; Zt = �t ; t 2 [T; T + `] ; P–a.s.

Definition 52 We say that a triplet (Y; Z; U) is a strong solution of the anticipated oblique BSVI (84) if

(Y; Z; U) 2 S2d [0; T + `]� �2d�k (0; T + `)� �2d [0; T + `] ;

such that, P–a.s.,8>>><>>>:
Yt +

Z T

t

H (s)Usds = �T +

Z T

t

f
�
s; Ys; Zs; Ys+�(s); Zs+�(s)

�
ds�

Z T

t

ZsdBs; t 2 [0; T ] ;

Ut 2 @' (Yt) ; t 2 [0; T ] ;
Yt = �t ; Zt = �t ; t 2 [T; T + `] :

Assume that:

(H1) The functions �; � : [0; T ] ! R+ are continuous and there exists a constant ` � 0 such that,
for all t 2 [0; T ] ; we have

t+ � (t) � T + ` ; t+ � (t) � T + `

and there exists L1 � 0 such that for all t 2 [0; T ] and for all nonnegative and integrable
function g; we haveZ T

t

g (s+ � (s)) ds � L1

Z T+`

t

g (s) ds ;

Z T

t

g (s+ � (s)) ds � L1

Z T+`

t

g (s) ds :

(H2) (�; �) 2 S2d [T; T + `]� �2d�k (T; T + `) :

(H3) H (�; �) : 
� [0; T ]! Rd�d is Ft–progressively measurable. There exists LH ; aH ; bH > 0 such
that P–a.s.

H = (hi;j)d�d 2 C
1
�
[0; T ] ;Rd�d

�
and for all t 2 [0; T ], P–a.s.,

(85)

(
(i) hi;j (t) = hj;i (t) ; for any i; j 2 1; d;
(ii) aH juj2 � hH (t)u; ui � bH juj2 ; for any u 2 Rd;

(H4) The function ' : Rd ! (�1;+1] is proper, lower semicontinuous and convex such that we
have E supt2[T;T+`] j' (�t)j < +1.
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(H5) For all s 2 [0; T ] ; the function f (�; s; �; �; �; �) is defined on 
� Rd � Rd�k � L2(
;Fr;P;Rd)�
L2(
;Fr0 ;P;Rd�k)with values in L2(
;Fs;P;Rd); where r; r0 2 [s; T + `] :

Moreover, assume there exist � 2 L2 (0; T ;R+), L2; L3; L4; L5 � 0 such that, for all s 2 [0; T ],
y; y0 2 Rd, z; z0 2 Rd�k, u; u0 2 S2d [s; T + `], v; v0 2 �2d�k (s; T + `), r; �r 2 [s; T + `], we have
dP
 ds–a.e.

(86)

8>>>>>><>>>>>>:

(i) jf(s; y; z; ur; v�r)� f(s; y0; z; ur; v�r)j � L2jy � y0j;
(ii) jf(s; y; z; ur; v�r)� f(s; y; z0; ur; v�r)j � L3jz � z0j;
(iii) jf(s; y; z; ur; v�r)� f(s; y; z; u0r; v�r)j � L4 EFs (jur � u0rj) ;
(iv) jf(s; y; z; ur; v�r)� f(s; y; z; ur; v

0
�r)j � L5 EFs (jv�r � v0�rj) ;

(v) jf(s; 0; 0; 0; 0)j � � (s) :

The main result of this section is given within the next theorem.

Theorem 53 Let the assumptions (H1�H5) be satisfied and L23+L1L25 < aH : Then there exists a unique
solution (Y; Z; U) of (84), in the sense of Definition 52, such that, P–a.s., for all t 2 [0; T ],

(87) EFt sup
s2[t;T ]

e�sjYsj2 + EFt
Z T

t

e�rjUrj2dr + EFt
Z T

t

e�rjZrj2dr � C ��1 ;

where

(88) �1 := EFt
�
e�T j�T j2 + e�T' (�T ) +

Z T

t

e�r j� (r)j2 dr +
Z T+`

T

e�r j�rj2 dr +
Z T+`

T

e�r j�rj2 dr
�

The proof will be the subject of the next sections. The existence will obtained using the classical
Moreau–Yosida approximation of the function ' by convex C1 functions '� , � > 0:

3.3.2 A priori estimates on the penalized equation

We consider the approximating anticipated BSDE

(89)

8>><>>:
Y �
t +

Z T

t

H (s)r'� (Y �
s ) ds = �T +

Z T

t

f
�
s; Y �

s ; Z
�
s; Y

�
s+�(s); Z

�
s+�(s)

�
ds�

Z T

t

Z�sdBs;

t 2 [0; T ] :
Y �
t = �t ; Z�t = �t ; t 2 [T; T + `] :

If we denote ~f (t; y; z; u; v) := f (t; y; z; u; v) �H (t)r'� (y), then it is immediately that ~f satisfies
the assumption (H5)with the sameL3; L4; � andL2 replaced by the constant (L2+bH=�). According
to Peng, Yang [139, Theorem 4.2] the anticipated BSDE (89) has a unique solution (Y �; Z�) 2
S2d [0; T + `]� �2d�k (0; T + `) :

Proposition 54 Let the assumptions (H1�H5) be satisfied and L23 + L1L
2
5 < aH : Then there exists a

positive constant C independent of � such that, P–a.s., for all t 2 [0; T ] and � > 0;

(90)

8>>>>>>><>>>>>>>:

(i) EFt
�
sup
s2[t;T ]

e�sjY �
s j2
�
+ EFt

Z T

t

e�rjZ�rj2dr � C ��1 ;

(ii) e�t' (J� (Y
�
t )) + EFt

Z T

t

e�r' (J� (Y
�
r )) dr � C ��1 ;

(iii) EFt
Z T

t

e�r jr'� (Y �
r )j

2 dr � C ��1
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and

(91)

8<:
(iv) e�tjY �

t � J� (Y
�
t ) j2 � C� ��1 ;

(v) EFt
Z T

t

e�rjY �
r � J� (Y

�
r ) j2dr � C�2 ��1 ;

where �1 is given by (88).

In what follows we prove that the sequence (Y �; Z�) is a Cauchy one.

Proposition 55 Let the assumptions (H1�H5) be satisfied and L23 + L1L
2
5 < aH : Then there exists a

positive constant C independent of � such that, P–a.s., for all t 2 [0; T ] and �; �0 > 0;

(92) EFt
�
sup
s2[t;T ]

e�sjY �
s � Y �0

s j2
�
+ EFt

Z T

t

e�rjZ�r � Z�
0

r j2dr � C (�+ �0) ��1 ;

where the quantity �1 is given by (88).

3.3.3 Proof of the existence and uniqueness of the solution

We start with the proof of the main result.
Proof of Theorem 53. Existence. From Proposition 55 we obtain that there exist (Y; Z) 2 S2d [0; T ]�
�2d�k (0; T ) such that

lim
�!0

Y � = Y; in S2d [0; T ] and lim
�!0

Z� = Z; in �2d�k (0; T ) :

We obtain that there exists U 2 �2d (0; T ) such thatr'�n (Y �n)* U; weakly in �2d (0; T ) ; as �n ! 0:

The application � : �2d (0; T + `) ! Rd defined by �(X) := E
R T
0
H (r)Xrdr is weak continuous

and, as consequence,

lim
n!1

E
Z T

0

H (r)r'�n (Y �n
r ) dr = E

Z T

0

H (r)Urdr :

We can pass to the limit in the approximating equation (89) and we obtain that8<: Yt +

Z T

t

H (s)Usds = �T +

Z T

t

f
�
s; Ys; Zs; Ys+�(s); Zs+�(s)

�
ds�

Z T

t

ZsdBs; t 2 [0; T ] ;

Yt = �t ; Zt = �t ; t 2 [T; T + `] :

The next result shows the effect of the anticipated time on the first component of the solution
Y:

Proposition 56 We suppose that the functions �; �0 : [0; T ] ! R+ satisfy (H1). Let the assumptions
(H2�H5) be satisfied and L23 < aH : In addition, we assume that assumptions (86�iii) is replaced by

(jjj) jf(s; y; z; ur; v�r)� f(s; y; z; u0r; v�r)j � L4
��EFs (ur � u0r)

�� :
Let (Y; Z; U) and (Y 0; Z 0; U 0) be the solutions of equation (84) corresponding to � and respectively �0 and
with f independent of Zt+�(t) :
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If � (t) � �0 (t), for any t 2 [0; T ] ; then there exists C > 0 such that

jYt � Y 0
t j2 � C

Z T

t

(�0 (s)� � (s)) ds ��2 ;

where �2 := EFt
�
e�T j�T j2 + e�T' (�T ) +

R T
t
e�r j� (r)j2 dr +

R T+`
T

e�r j�rj2 dr
�

.

The classical comparison theorem has the following specific form for the anticipated oblique
BSVI (84). The proof of the next result follows closely Peng, Yang [139, Theorem 5.1] and the
arguments used along Proposition 54 and Theorem 53.

Proposition 57 We suppose that �1; �2 2 S21 [T; T + `] and the functions f 1; f2 satisfy (H5) and are
independent ofZt+�(t): Let the assumptions (H1) and (H3�H4) be satisfied such thatL23 < aH : In addition,
we assume that f 2 is increasing with respect to the last variable.

Let (Y 1; Z1; U1) and (Y 2; Z2; U2) be the solutions of equation (84) corresponding to (�1; f1) and re-
spectively (�2; f2).

If �1 (t) � �2 (t) for any t 2 [T; T + `] and f 1(s; y; z; ur) � f 2(s; y; z; ur); for all s 2 [0; T ], y 2 R,
z 2 Rk, u 2 S21 [s; T + `], r 2 [s; T + `], then we have Y 1

t � Y 2
t , a.e., P–a.s.
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3.4 BSVI with nonconvex, switch-dependent reflection model

3.4.1 Motivation. Infection time in multi-stable gene networks

It is well-known that, in prokaryotes, genes are switched between different states (e.g. on/off) by
interactions between specific proteins which intervene at the level of regulation and specific DNA
sequences. To better understand the mathematical model we are going to present hereafter, let us
concentrate on a basic network presenting bistability of protein concentration and derived from
bacteriophage lambda. Our simplifying mathematical approach considers a two-scale model (see,
for instance Crudu, Debussche, Muller, Radulescu [55]). The state space of this component is ob-
viously discrete consisting of standard vectors basis ofR4 (E = fe1; e2; e3; e4g): Switching between
these states is given at random times generated according to the propensity function computed
starting from the current state (e.g. Gillespie [75]). While in lysogenic state, repressor and dimer
concentrations are given by an ordinary differential equation (ODE). In lytic state, transcription
of the repressor is turned off. In an attempt to distinguish between symbiotic (lysogenic) behav-
ior and the excision of the virus, it is, therefore, natural to set the lysogenic domain O to be the
exterior of some regions "around (0; 0) " (or other stable points). Assume, for the time being that,
at some time T > 0, the phage lambda has been functioning on a lysogenic pathway starting at
some time t0. Then, the trajectory has been reflected such that to remain in the lysogenic domains
Oi: While many type of reflection can be considered, we will assume here that the virus is driven
by the best reachable stable state. Reverse-engeneering from time T in order to detect the time of
infection leads to the attempt of solving a backward differential equation adapted to the underly-
ing DNA (Markov) mechanism and reflected in the nonconvex domains Oi: We emphasize that,
in our framework, the domains are allowed to vary in time (at time t they depend on the mode
�t�).

3.4.2 Preliminaries. Setting the problem

We briefly recall the construction of a particular class of Markov pure jump, non explosive processes
on a space 
 and taking their values in a metric space (E;B (E)) : For the explicit construction of

 (using the Hilbert cube), the reader is referred to Davis [59, Section 23]. Here, B (E) denotes the
Borel �-field ofE: The elements of the spaceE are referred to as modes. In all generality, E � Rm0 ,
for some m0 � 1. The process is completely described by a couple (�;Q) constituting on:
(i) a Lipschitz continuous jump rate � : E �! R+ such that sup�2E j� (�)j � c0 and
(ii) a transition measure Q : E �! P (E), where P (E) stands for the set of probability mea-

sures on (E;B (E)) such that:8>>><>>>:
(ii1) Q (; fg) = 0;
(ii2) for each bounded, uniformly continuous h; there exists a continuous �h : R! R+;

such that �h (0) = 0 and
��R
E
h (�)Q (; d�)�

R
E
h (�)Q (0; d�)

�� � �h(j � 0j):
(The distance j � 0j is the usual Euclidian one on Rm.)

Given an initial mode 0 2 E; the first jump time has a conditional law P0 (T1 � t) = exp (�t� (0)) :
The process �t := 0; on t < T 1: The post-jump location 1 hasQ (0; �) as conditional distribution.
Next, we select the inter-jump time increment T2 � T1 to be such that P0 (T2 � T1 � t =T1; 1) =
exp (�t� (1)) and let us set �t := 1; if t 2 [T1; T2) : The post-jump location 2 satisfies the relation
P0 (2 2 A = T2; T1; 1) = Q (1; A) ; for all Borel set A � E: And so on. Similar construction can
be given for a non-zero initial starting time (i.e. a pair (t; 0)).
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We now look at the stochastic process � under P0 and denote by F0 its natural filtration�
F[0;t] := � f�r : r 2 [0; t]g

�
t�0 : The predictable �-algebra will be denoted by P0 and the progres-

sive �-algebra by Prog0: As usual, we introduce the random measure q on 
 � [0;+1] � E by
setting

q (!;A) =
X
k�1

1(Tk(!);�Tk(!)(!))2A
; for all ! 2 
; A 2 B ([0;+1])� B (E) :

The compensator of q is bq (ds; ) d� := � (�s�)Q (�s�; d�) ds and the compensated martingale mea-
sure is given by eq (dsd�) := q (dsd�)� � (�s�)Q (�s�; d�) ds:

Following the general theory of integration with respect to random measures (see, for exam-
ple Ikeda, Watanabe [94]), we denote by Lr

�
q;RN

�
the space of all P0 
 B (E) - measurable,

RN�valued functions Hs (!; �) on 
� R+ � E such that, for all T < +1;

E0
�Z T

0

Z
E

jHs (�)jr q (dsd�)
�
= E0

�Z T

0

Z
E

jHs (�)jr � (�s�)Q (�s�; d�) ds
�
< +1:

Here, N 2 N� and r � 1 is a real parameter. By abuse of notation, whenever no confusion
is at risk, the family of processes satisfying the above condition for a fixed T > 0 will still be
denoted by Lr

�
q;RM

�
.To keep arguments simple, we will be dealing with a finite set of modes

E = f1; 2; :::; pg ; for some p � 2: Moreover, at some point we will assume that the observations
on the DNA are only made up to time TM for some M 2 N�. Then, we will need to modify q to
take into account this condition as well as a terminal time T > 0.

Let us introduce the rest of the elements which will construct the backward multivalued inclu-
sion. Consider a function 'O : Rm ! (�1;+1] such that Dom ('O) := fy 2 Rm : ' (y) < +1g :
For the function'O assumeDom ('O) = O and, as before,Dom (@�'O) := fx 2 Rm : @�'O (x) 6= ;g.
The reader is invited to note that the domains appearing in our example (cf. Fig. 1) are not con-
vex. Given two non-negative real constants �; � � 0, we consider a family of mode-indexed,
(�; �)-semiconvex functions 'O : Rm ! (�1;+1] and assume

(AO) Dom
�
'O

�
= O is bounded,

for all  2 E. The oblique direction will be given by a continuous symmetric matrix-valued
function H : R+ � Rm �! S+m satisfying

(AH)

8<: i) jH (t; y)�H (t; y0)j+ j (H (t; y))�1 � (H (t; y0))�1 j � cH jy � y0j;

ii)
1

cH
juj2 � hH (t; y)u; ui � cH juj2 , for all u 2 Rm;

for some cH > 0 and all t 2 R+, (y; y0) 2 R2m: Here, S+m stands for the family of symmetric,
positive-definite real-valued matrix of m�m type.

We consider that the driver function f : R+�E�E�Rm�Rm �! Rm is globally continuous,
bounded and there exists some constant cf > 0 such that

(AF ) jf (t; ; 0; y; z)� f (t; ; 0; y0; z0) j � cf (jy � y0j+ jz � z0j) ;

for all (t; ; 0; y; ; y0; z; z0) 2 R+ � E � E � R4m:
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In connection to our model, for some fixed terminal time T > 0, we consider the following
backward stochastic variational inclusion with mode-dependent reflection :

(93)

8>>>><>>>>:
�dY T;�

t +H(t; Y T;�
t )@�'O�t� (Y

T;�
t )dt 3

Z
E

f(t; ;�t�; Y
T;�
t� ; ZT;�t ())bq (dt; d)

�
Z
E

ZT;�t () q (dtd) ;

Y T;�
T = � 2 L0 (
;FT ;P0 ;Rm) ;

P0�almost everywhere. We consider an additional cemetery state � 2 Rm acting as an indicator
of the infection time. As we will see afterwards, this equation can be linked to a system of reflected
ordinary differential equations. With this in mind, the coherence of our solution will have to be
ensured at jumping times. In other words, one would need the solution Y T;�

t to belong toO�t� and
will check this condition at switching times. Should this condition fail to hold, the trajectory will
be sent to � (lysogenic pathway is not coherent with the model prior to this time) and remains at
� for any time before.

The definition of a solution is given, as usual, by a triplet
�
Y T;�; ZT;�; KT;�

�
in which the latter

components take into account the adaptedness, respectively a feedback correction for Y T;�:

Definition 58 A solution of (93) consists of a triplet (Y T;�
t ; ZT;�t ; KT;�

t ) such that:8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(i) 1. The process Y T;�
� is càdlàg and continuous except, maybe, at switching times.

2. For P0 � Leb -almost all (!; t) such that Tn (!) � t < Tn+1 (!) ; Y
T;�
t 2 O�Tn :

3. If Y T;�
Tn
(!) =2 O�Tn�1 ; then Y T;�

s (!) = �, for almost all s < Tn (!) :

(ii) 1. The process ZT;�� (�) is Rm-valued, F�predictable and

2. E0
�Z T

0

Z
E

jZT;�t () jbq (dt; d)� < +1:

(iii) 1. The process KT;�
� is F�adapted and

Z T

0

jKT;�
t j2dt < +1, P0-almost everywhere.

2. For P0 � Leb -almost all (!; t) such that Tn (!) � t < Tn+1 (!) ; one has
(KT;�

t (!) ; Y T;�
t (!)) 2 (@�'O�Tn(!)(!)(Y

T;�
t (!))� Rm) [ f(0;�)g :

(iv) One has, P0 � Leb -almost everywhere,

Y T;�
t +

Z T

t

H(Y T;�
s )KT;�

s ds+
X

n�0; t<Tn�T
ZT;�Tn (�Tn)

= � +

Z T

t

Z
E

f(s; ; Y T;�
s ; ZT;�s )� (�s)Q (�s; d) ds:

Moreover, unless stated otherwise, we will assume that the mode process jumps at mostM > 0
times prior to T > 0; i.e.

(AM ) P0 (TM+1 = +1) = 1:

3.4.3 Measurability issues, driver and compensator

Before giving the reduction of our equation to a system of ODE, we need to introduce some nota-
tions making clear the stochastic structure of several concepts : final data, predictable and càdlàg
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adapted processes as well as the driver and the compensator of the initial random measure. The
notations in this subsection follow the ordinary differential approach from Confortola, Fuhrman,
Jacod [49, Proof of Theorem 3]. Since we are only interested in what happens on [0; T ] ; we intro-
duce a cemetery state (1; )which will incorporate all the information after T ^TM : It is clear that
the conditional law of Tn+1 given (Tn;�Tn) is now composed by an exponential part on [Tn ^ T; T ]
and an atom at1: Similarly, the conditional law of �Tn+1 given (Tn+1; Tn;�Tn) is the Dirac mass at
 if Tn+1 =1 and given by Q otherwise. Finally, under the assumption AM , after TM ; the marked
point process is concentrated at the cemetery state.

We set ET : = ([0; T ]� E) [ f(1; )g. For every n � 1; we let ET;n �
�
ET
�n+1

be the set of all
marks of type e = ((t0; 0) ; :::; (tn; n))where

(94)

8<:
t0 = 0; (ti)0�i�n is non-decreasing;
for every 0 � i � n� 1; if ti � T; then ti < ti+1;
for every 0 � i � n� 1; if ti > T; then (ti; i) = (1; ) ;

and endow it with the family of all Borel sets Bn. For these sequences, the maximal time is denoted
by jej := tn. Moreover, by abuse of notation, we set jej := n: Whenever T � t > jej ; we set

(95) e� (t; ) := ((t0; 0) ; :::; (tn; n) ; (t; )) 2 ET;n+1:

By defining

(96) en := ((0; 0) ; (T1;�T1) ; :::; (Tn;�Tn)) ;

we get an ET;n�valued random variable, corresponding to our mode trajectories.
Let us now express the different notions (final condition, adapted process, predictable process,

etc.) with respect to this framework.
The final data � is a FT�measurable random variable and, thus, for every n � 0; there exists

a Bn=B (Rm)�measurable function ET;n 3 e 7! �n (e) 2 Rm such that:

(97)
�

If jej =1; then �n (e) = 0:
Otherwise, on Tn (!) � T < Tn+1 (!) ; � (!) = �n (en (!)) :

A càdlàg process Y continuous except, maybe, at switching times Tn is given by the existence
of a family of Bn 
 B ([0; T ]) =B (Rm)-measurable functions yn such that:

(98)

8<: For all e 2 ET;n; yn (e; �) is continuous on [0; T ] and constant [0; T ^ jej] :
If jej =1; then yn (e; �) = 0:
Otherwise, on Tn (!) � t < Tn+1 (!) ; yt (!) = yn (en (!) ; t) ; for all t � T .

Similar, an Rm�valued F-predictable process Z defined on 
 � [0; T ] � E is given by the
existence of a family of Bn 
 B ([0; T ])
 B (E) =B (Rm)�measurable functions zn satisfying
(99)�

If jej =1; then zn (e; �; �) = 0:
Otherwise, on Tn (!) < t � Tn+1 (!) ; zt (!; ) = zn (en (!) ; t; ) ; for all t � T and  2 E.

To deduce the form of the compensator, one takes into account (AM ) and simply writes:

(100)

8>>>>><>>>>>:

If n �M � 1;bqne (dt; d) := �(jej)Q(jej; d)1jej<1;t2[jej;T ]Leb (dt) + � (d) �1 (dt) 1(jej<1;t>T )[jej=1;

If n �M; then bqne (dt; d) = � (d) �1 (dt)bq (!; dt; d) :=X
n=0

bqnen(!) (dt; d) 1Tn(!)<t�Tn+1(!)^T :
:
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Finally, given a predictable process z := (zn) ; the driver is given by a family of Bn
B ([0; T ])

B (E)
 B (Rm)
 B (Rm) =B (Rm)�measurable functions

f (zn)n : ET;n � [0; T ]� E � R2m �! Rm

such that:

(101)

8>>>><>>>>:
If jej <1 and n �M � 1; then, for all (e; t; ; y; y0; w; w0) 2 ET;n � [0; T ]� E � R4m;
jf (zn)n (e; t; ; y; w)� f (z0;n)n (e; t; ; y0; w0) j
� c

�
jy � y0j+ jw � w0j+

P
02E jzn(e; t; 0)� z0n (e; t; 0)jQ(jej; d0)

�
:

Otherwise, f (zn)n (e; �; �; �; �) = 0:

In this case, we identify the driver as follows.

(102)

(
Whenever Tn < t � Tn+1, we have
f (t; ;�t�; y; �) = f (zn)n (en (!) ; t; ; y; � ()� zn (en (!) ; t; )) :

3.4.4 A scheme based on reflected solutions for ordinary differential equations. The iterating
differential inclusion

We consider a càdlàg process Y continuous except, maybe, at switching times Tn. Then, as ex-
plained before, this can be identified with a family (yn) : At jumping times Tn+1; the process Y is
something like

(103) YTn+1 = yn+1
�
en �

�
Tn+1;�Tn+1

�
; Tn+1

�
:

We construct, for every n � 0;

(104) byn+1 (e; t; ) := yn+1 (e� (t; ) ; t) 1jej<t

and YTn+1 can be obtained by simple integration of the previous quantity with respect to the con-
ditional law of

�
Tn+1;�Tn+1

�
knowing FTn :

We introduce the following scheme. We let � be a final condition. We "correct" � = (�n) given
by (97) as to be in the admissible domains as follows:

�nadm (e) := �n (e) 1�n(e)2Ojej +�1�n(e)2Ocjej
:

It is obvious that, should the data not be in the target domain, there is no point in solving the
reflected BSDE. In this case, we simply set the solution to be a constant point � designed to be a
flag signaling that infection cannot precede the current time. We consider the family of (ordinary)
differential inclusions

(105)

8>>>>>>>>>><>>>>>>>>>>:

yM (eM (!) ; t) = �Madm (eM (!)) ;

For n �M � 1; �n;+adm (en (!)) :=
�
�nadm (en (!)) ; if yn+1 (en+1 (!) ; 0) 2 Ojen(!)j ;

�; otherwise,
�dyn (en (!) ; t) +H (t; yn (en (!) ; t)) @

�'Ojen(!)j
(yn (en (!) ; t)) dt 3

+
X
2E

f(byn+1)n (en (!) ; s; ; yn (en (!) ; s) ;�yn (en (!) ; s)) bqnen(!) (ds; fg) ;
yn (en (!) ; T ) = �n;+adm (en (!)) :
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Proposition 59 Let us assume that (AO, AH , AF and AM ) hold true. Then, the càdlàg process Y = (yn)
continuous, except at switching times, is a solution for (93) if and only if it satisfies the system (105).

The elements of proof are provided in Section 3.4.6. The basic idea is to employ the structure
presented in the previous subsection. Indeed, since Z only acts at jumping times, there is a simple
relation linking zn to yn and byn+1: The conclusion follows by plugging this z into the equation.

In this subsection we turn our attention to the solvability of such reflected differential inclu-
sions. To this purpose, let us freeze the regular domain O of a (�; �)-semiconvex function 'O
satisfying the assumption (AO). The inclusion has the form:

(106)

8<: �dy (t) +H(t; y (t))@�'O (y (t)) dt 3
Z
E

f (t; 0; y (t)) � (dt; d0) ;

y (T ) = �;

where � stands for the compensator bp. Throughout the remaining of the section and unless stated
otherwise, the function f : R+ � E � Rm �! Rm is assumed to be globally continuous, bounded
and Lipschitz continuous in space, uniformly with respect to the time and  2 E.

Definition 60 A solution of (106) consists of a couple (y; k) satisfying the following:8>>>>>>>><>>>>>>>>:

(i) 1. The function y 2 C ([0; T ] ;Rm) is continuous and for Leb -almost all t , y (t) 2 O.
2. The application [0; T ] 3 t 7! 'O (y (t)) is integrable w.r.t. Lebesgue measure.

(ii) 1. The function k 2 L2 ([0; T ] ;Rm) is square integrable w.r.t. Lebesgue measure.
2. For Leb�almost all t 2 [0; T ], one has k (t) 2 @�'O (y (t)) :

(iii) The equality y (t) +
Z T

t

H (s; y (s)) k (s) ds = � +

Z T

t

Z
E

f (s; 0; y (s)) � (ds; d0) ;

holds true, Leb�almost everywhere.

Theorem 61 We assume (AO) and (AH) to hold true (where O is replaced with O). Then, for every
� 2 O, there exists a unique couple of deterministic functions (y; k) 2 C([0; T ] ;Rm) � L2 ([0; T ] ;Rm)
which satisfies (106), in the sense of Definition 60.

3.4.5 Targeted design. Occupation measures

We consider our differential mechanism to be governed by an exogenous control parameter that
can be associated to temperature and/or catalysts conditions. The construction of the differential
component is given by a driver depending on a predictable control process u. We let U be a
compact metric space and assume that the driver function f : R+�E�E�Rm�Rm�U �! Rm
is globally continuous, bounded and there exists c > 0 such that

(A0
F ) jf(t; ; 0; y; z; u)� f(t; ; 0; y0; z0; u)j � c(jy � y0j+ jz � z0j);

for all (t; ; 0; y; y0; z; z0; u) 2 R+ � E � E � R4m � U:

Occupation measures
One replaces ' with inf-convolutions of type '"(x) := infy2Rm

�
1
2"
jx� yj2 + ' (y)

	
; for x 2 Rm

and " > 0: To every such penalized solution corresponding to a predictable control, one can
associate a measure taking into account all the components: time, accessible mode, occupation
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of the space (given by Y ) and corrective term (Z) as well as the control. A further variable takes
into account the gradient. These measures are shown (in the proof of Proposition 62) to satisfy
convenient compactness criteria and exhibit a support condition related to the subgradient. To
facilitate passage to the limit in penalizations, we give a (support) condition related to the distance
to the lysogeny domains. The reader is invited to note that the solution Y T;�;u belongs to O :=

([2EO)[f�g : Therefore, under the boundedness assumption on the domains, Y T;�;u
t 2 B (0; C)[

f�g ; for some generic constant C: We introduce the following sets

E�;t;T := [t; T ]� E2 � ((B (0; C)� Rm) [ (�� f0g))� B (0; 2C + j�j)
�" (t; T; �) :=8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:

� 2 P(B (0; C) [ f�g)� P(E�;t;T � U);

8� 2 C1;2b ([t; T ]� Rm) ;
E0 [� (T; �)] =

R
Rm� (t; y)�

1 (dy)

+
R
E�;t;T

hry� (s; y1) ; H (s; y1) y2i�2 (dsd0ddy1dy2dz; U)
�
R
E�;t;T�U hry� (s; y1) ; f(s; 

0; ; y1; z; u)� ()Q (; f0g)i�2 (dsd0ddy1dy2dzdu)
+
R
E�;t;T

(@t� (s; y1) + � (s; y1 + z)� � (y1))� ()Q (; f0g)�2 (dsd0ddy1dy2dz; U) ;

Supp (�2) �
(
(s; 0; ; y1; y2; z; u) : 8a 2 Rm;
ha� y1; y2i+ '"O (y1) � '"O (a) + (�+ � jy2j) ja� y1j2

)
R
E�;t;T

�
d2O ^ 1

�
(y1)�

2 (dsd0ddy1dy2dz; U) � C"R
E�;t;T

jy2j2 �2 (dsd0ddy1dy2dz; U) � C:

9>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>;
The link between these sets and the actual solution of our initial problems will appear explic-

itly in the proofs. For now, all one needs to know is the following.

Proposition 62 Let us fix " > 0, the time horizon T > 0; 0 � t � T and the final data �: Then, the
family �" (t; T; �) is non-empty, convex and compact (with respect to the usual topology on the space of
probability measures).

As explained before, we embed the solutions of our (approximating) BSDE into a measure.
The linear restriction is a mere reformulation of Itô’s formula. The support condition is linked
to gradients. The distance to lysogeny domains follows from the estimates on approximating
solutions as do the second order moments (guaranteeing compactness).

Second, following the approximating construction of solution to the initial problem (93) (see
proof of Theorem 61), one considers the lower limit of sets

�0 (t; T; �) = lim inf
"!0

�" (t; T; �) :

Admit, for the time being (the actual proof is given afterwards) that the solutions to the initial
BSVI (with control) can be seen as elements of the limit set �0 (t; T; �) : Then one is entitled to
ask oneself if these solutions also enjoy similar properties (regularity, support and linear-type
restriction). This is, indeed, the case as summarized by the following result.

Theorem 63 (i) (convexity and compactness) The set �0 (t; T; �) is a non-empty, convex and compact
subset of P(B (0; C) [ f�g)� P(E�;t;T � U) and, for every � = (�1; �2) 2 �0 (t; T; �) ;Z

E�;t;T�U

jy2j2 �2 (dsd0ddy1dy2dzdu) � C:
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(ii) (support and subdifferential) Every measure � = (�1; �2) 2 �0 (t; T; �) satisfies the support
condition

Supp
�
�2
�
�
�
(s; 0; ; y1; y2; z; u) : y1 2 O; y2 2 @�'O (y1)

	
:

(iii) (linear constraint) Every limit measure (�1; �2) 2 �0 (t; T; �) satisfies

E0 [� (T; �)]

2
Z
Rm
� (t; y)�1 (dy)

+lim inf
"!0

�Z
E�;t;T�U

hry� (s; y1) ; H (s; y1) y2i �2 (dsd0ddy1dy2dzdu) : � 2 �" (t; T; �)
�

�
Z
E�;t;T�U


R
E
f(s; 0; ; y1; z; u)� ()Q (; d

0)
�
�2 (dsd0ddy1dy2dzdu)

+

Z
E�;t;T�U

(@t� (s; y1) + � (s; y1 + z)� � (y1))� ()Q (; f0g)�2 (dsd0ddy1dy2dzdu) :

3.4.6 Proofs of the results in Sections 3.4.4 and 3.4.5

This section gathers all the proofs of the results in Sections 3.4.4 and 3.4.5.

Proof of Proposition 59 We provide the equivalence between the BSVI (93) and the system of
ordinary differential inclusions (105). The proof strongly relies on the structure properties men-
tioned in Subsection 3.4.3. The idea is to associate a specific form to the jump component ZT;� and
plug it into the driver written as in Subsection 3.4.3.

(Elements of) Proof of Theorem 61 To prove Theorem 61, one uses a penalizing approach sim-
ilar to the classical Moreau-Yosida-Brézis one for the convex context. More precisely, we situate
the problem in the nonconvex setup introduced by Răşcanu, Rotenstein [147]. The equations that
make the object of our framework cannot be tackled by the semigroup operators theory because
of the particular structure of the multivalued term.

Proofs of the Results of Section 3.4.5 We give the proof of the linear formulations associated to
the "-approximating problems. We begin with proving that this set is non-empty. For simplicity
reasons, we assume that the domainO is switch-invariant (i.e. O does not depend on  2 E). The
general result follows similar patterns and relies on the solution of the approximating problem

(107)

8>>><>>>:
�dY ";T;�;u

t +H(t; Y ";T;�;u
t )r'"O�t� (Y

";T;�;u
t )dt

=

Z
E

f(t; 0;�t�; Y
";T;�;u
t� ; Z";T;�;ut () ; ut)bq (dt; d0)� Z

E

Z";T;�;ut (0)q(dt; d0);

Y ";T;�;u
T = � 2 L0 (
;FT ;P0 ;Rm) :

To end this section, we give the proof of Theorem 63 characterizing the (relaxed) occupation
measures associated to the BSVI (93). Before giving the proof of this theorem, we invite the reader
to note that if one passes to the limit as " ! 0 and looks at the proof of Theorem 61, one gets a
solution of (106). Then, one obtains the solution of (93). Therefore, the limits of the occupation
measures introduced before characterize (but may not be limited to) all the controlled solutions
of (93). This justifies our interest in the properties of such �0 (t; T; �).
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3.5 Approximate and approximate null-controllability for a class of piecewise
linear Markov switch systems

3.5.1 The control system and main results

The space framework is similar to the one found in the previous section. We consider now a
switch system given by a process (X(t);�(t)) on the state space RN � E; for some N � 1 and the
family of modes E. The control state space is assumed to be some Euclidian space Rd; d � 1. The
component X(t) follows a controlled differential system depending on the hidden variable . We
will deal with the following model.

(108) dXx;u
s = [A (�s)X

x;u
s +Bus] ds+

Z
E

C (�s�; �)X
x;u
s� eq (ds; d�) ; s � 0; Xx;u

0 = x:

The operatorsA () 2 RN�N ,B 2 RN�d and C (; �) 2 RN�N , for all ; � 2 E. For linear operators,
we denote by ker their kernel and by Im the image (or range) spaces.

Moreover, the control process u : 
 � R+ �! Rd is an Rd-valued, F0� progressively measur-
able, locally square integrable process. The space of all such processes will be denoted by Uad and
referred to as the family of admissible control processes. The explicit structure of such processes
can be found in Jacobsen [97, Proposition 4.2.1], for instance. Since the control process does not
(directly) intervene in the noise term, the solution of the above system can be explicitly computed
with Uad processes instead of the (more usual) predictable processes.

The duality abstract characterization of approximate null-controllability

We begin with recalling the following approximate controllability concepts.

Definition 64 The system (108) is approximately controllable in time T > 0 starting from the initial mode
0 2 E; if, for every F[0;T ]-measurable, square integrable random variable � 2 L2

�

;F[0;T ];P0;0 ;RN

�
,

every initial condition x 2 RN and every " > 0, there exists some admissible control process u 2 Uad such
that E0;0

h
jXx;u

T � �j2
i
� ": The system (108) is said to be approximately null-controllable in time T > 0

if the previous condition holds for � = 0 (P0;0-a.s.).

At this point, let us consider the backward (linear) differential equation

(109)

8>>>><>>>>:
dY T;�

t =

�
�A� (�t)Y T;�

t �
Z
E

(C� (�t; �) + I)ZT;�t (�)� (�t)Q (�t; d�)

�
dt

+

Z
E

ZT;�t (�) q (dt; d�) ;

Y T;�
T = � 2 L2

�

;F[0;T ];P0;0 ;RN

�
:

Classical arguments on the controllability operators and the duality between the concepts of con-
trollability and observability lead to the following characterization (cf. Goreac, Martinez [83,
Theorem 1]).

Theorem 65 ([83, Theorem 1]) The necessary and sufficient condition for approximate null-controllabi-
lity (resp. approximate controllability) of (108) with initial mode 0 2 E is that any solution

�
Y T;�
t ; ZT;�t (�)

�
of the dual system (109) for which Y T;�

t 2 kerB� ; P0;0
Leb almost everywhere on 
 � [0; T ] should
equally satisfy Y T;�

0 = 0; P0;0�almost surely (resp. Y T;�
t = 0; P0;0
Leb� a:s:).
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Main Result : An Iterative Invariance Criterion
Before stating the main result of our study, we need the following invariance concepts (cf. Cur-

tain [57], Schmidt, Stern [158]).

Definition 66 We consider a linear operator A 2RN�N and a family C =(Ci)1�i�k � RN�N .
(i) A set V � RN is said to be A- invariant if AV � V:

(ii) A set V � RN is said to be (A; C)- invariant if AV � V +
kP
i=1

Im Ci:

Let us construct now a mode-indexed family of linear subspaces ofRN denoted by (V M;n
 )0�n�M; 2E

by setting

(110) A� () := A� ()�
Z
E

(C� (; �) + I)�()Q(; d�) and V M;M
 = kerB�;

for all  2 E; and computing, for every 0 � n �M � 1;

(111)
V M;n
 the largest

�
A� () ;

h
(C�(; �) + I)�VM;n+1

�
: � 2 E; Q (; �) > 0

i�
�invariant subspace of kerB�:

Here, �V denotes the orthogonal projection operator onto the linear space V � RN . Whenever
there is no confusion at risk, having fixed the maximal number of jumps M � 1; we drop the
dependency on M (i.e. we write V n

 instead of V M;n
 for all 0 � n �M ).

Remark 67 (i) A simple recurrence argument shows that V M;n
 � V M;m

 , for every 0 � n � m � M

and V M;n
 � V M 0;n

 ; for all 0 � n � M � M 0: Moreover, since the dimension of kerB� cannot exceed N;
V M;0
 = V

min(M;Np);0
 :

(ii) This spaces do not depend on the choice of the controllability horizon T > 0: Therefore, if the
approximate (null-)controllability is described by these sets, it is independent of the time horizon.

The main result of the paper is the following.

Theorem 68 The switch system (108) is approximately null-controllable (in time T > 0) with 0 as initial
mode, if and only if the generated set V 0

0
reduces to f0g :

The proof is postponed to Section 3.4.6. This proof uses the reduction of backward equations
with respect to Marked point processes to a system of ordinary differential equations given in
Confortola, Fuhrman, Jacod [49]. In order to formulate this system (see Proposition 73), we need
to explain some concepts and notations. To prove necessity of the condition, one uses convenient
feedback controls and the equivalence between invariance and the concept of feedback invariance
(see Proposition 74). Sufficiency (given by Proposition 75) follows from (time-) invariance of
convenient linear subspaces with respect to ordinary differential dynamics.
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Comparison with [83]
We begin with giving a different (and simpler) proof of (some of) the results in [83]. Besides the

general (abstract) characterization of approximate and approximate null-controllability, explicit
invariance criteria were given in two specific settings.
(i) In the case without multiplicative noise C = 0; one notes that the subspaces V n

 (for 0 � n <
M ) do not depend on n: They reduce, in fact, to the largest A� ()-invariant subspace of kerB�:
Moreover, in this framework, A� ()-invariance and A� ()-invariance coincide and Theorem 68
yields the following.

Criterion 69 ([83, Criterion 4]) The system (108) is approximately null-controllable (with initial mode
0 2 E) if and only if the largest subspace of kerB� which is A� (0) - invariant is reduced to the trivial
subspace f0g for all 0 2 E:

(ii) In the case of Poisson-driven systems with mode-independent coefficients A and C; one
works with the mode-independent operator A� := A� �

R
E
(C� (�) + I)�Q(d�). The reader fa-

miliar with Goreac, Martinez [83, Criterion 3] will note that the necessary and sufficient criterion
concerns a notion of strict invariance. We get the same condition provided the system has the
possibility to stabilize (the maximal number of jumps M � N +1 is allowed to exceed the dimen-
sion of the state space). Moreover, without loss of generality, one assumes that E is the support
of Q:

Criterion 70 ([83, Criterion 3]) Let us assume thatA 2 RN�N ; B 2 RN�d are fixed and C (�) 2 RN�N ;
for all � 2 E and that � ()Q (; d�) is independent of  2 E: Moreover, we assume that M � N + 1.
Then the associated system is approximately null-controllable if and only if the largest subspace V0 � kerB�

which is (A�; [C� (�)�V0 : � 2 E])-invariant is reduced to f0g.

Approximate or approximate null-controllability
Using Riccati techniques, one proves (see Goreac, Martinez [83, Criterion 3]) that, for Poisson-

driven systems with mode-independent coefficients, approximate controllability and approxi-
mate null-controllability properties coincide. However, in the case of actual switching systems,
the two notions have no reason to and do not coincide. This is illustrated by an explicit ex-
ample. In fact, the reader may note that the null-controllability property strongly depends on
the initial mode (through the computation of V 0

0
as last step). A sufficient criterion (already

available in Goreac, Martinez [83, Criterion 3]) is that the largest subspace of kerB� which is
(A� (0) ; [(C�(0; �) + I)�kerB� : � 2 E;Q (0; �) > 0])�invariant should be reduced to f0g : It turns
out that asking this condition to hold true for all 0 2 E actually implies approximate controlla-
bility. (The proof is postponed to Section 3.4.6.)

Condition 71 Let us assume that the largest (A� () ; [(C�(; �) + I)�kerB� : Q (; �) > 0])-invariant
subspace of kerB� is reduced to f0g, for every  2 E: Then, for every T > 0 and every 0 2 E, the system
(108) is approximately controllable in time T > 0:

Remark 72 Please note that the notion of (A� () ; [(C�(; �) + I)�kerB� : Q (; �) > 0])-invariance and
that of (A� () ; [(C�(; �) + I)�kerB� : Q (; �) > 0]) -invariance coincide for subspaces of kerB�. Sec-
ond, according to [83, Criterion 3], the notions of approximate and approximate null-controllability coin-
cide in the context of Poisson-driven systems with mode-independent coefficients. Then, a careful look at
[83, Criterion 3] provides an example of system which is approximately controllable without satisfying the
sufficient condition given before.
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3.5.2 Proof of the results

Before giving the reduction of our backward stochastic equation to a system of ODE, we invite
the reader to recall the stochastic structure of several concepts : final data, predictable and càdlàg
adapted processes and compensator of the initial random measure. For doing this one can consult
again the ordinary differential approach from Confortola, Fuhrman, Jacod [49].

Reduction to a System of Linear ODEs We consider the family of (ordinary) differential equa-
tions

(112)

8>>>><>>>>:
yM (eM (!) ; �) = �M (eM (!)) . For n �M � 1; yn (en (!) ; T ) = �n (en (!)) ;

dyn (en (!) ; t) = �A�
�

��
en(!)

��� yn (en (!) ; t) dt
�
R
E

�
C�
�

��
en(!)

�� ; ��+ I
�
(byn+1 (en (!) ; t; �)� yn (en (!) ; t)) bqnen(!) (dt; d�)

(= �A�
�

��
en(!)

��� yn (en (!) ; t) dt
�
P

�2E �(jen(!)j)Q(jen(!)j; �)
�
C�
�

��
en(!)

�� ; ��+ I
�
yn+1 (en (!)� (t; �) ; t) dt);

The following result adapts [49, Lemma 7] to our case.

Proposition 73 A càdlàg adapted process Y given by a family of functions (yn) as in (98) is solution to
(109) if and only if, for P-almost all ! and all 0 � n �M; it satisfies the system (112).

The proof is quasi-identical to the one of [49]. The only difference in our case is the presence
of the term �A�

�

��
en(!)

��� yn (en (!) ; t) dt which is, of course, classical. The results of [49] apply
directly if one assumes that �() > 0 for all  2 E (that is if there exists no absorbing state).
Otherwise, we actually get an ODE of type dyn (en (!) ; t) = �A�

�

��
en(!)

��� yn (en (!) ; t) dt:
An Iterative Invariance-Based Criterion (Proof of Theorem 68)
As already hinted in Goreac, Martinez [83], the (approximate) controllability properties can be

expressed with respect to invariance conditions. The equivalence between the dual (backward)
stochastic equation (109) and the (backward) ordinary differential system (105) yields the follow-
ing approximate controllability criterion.

Proposition 74 If the system (108) is approximately null-controllable with 0 as initial mode, then the
generated set V 0

0
reduces to f0g :

At this point, the reader may want to note that these considerations involve one equation at the
time. The invariant space obtained is then employed for the next equation and gives a coherent
character to the system. The basic idea is to provide some kind of local in time invariance of the
sets concerned. In Goreac, Martinez [83], this is done using Riccati techniques. But, except for
special cases, the solvability of these stochastic schemes is far from obvious. Due to the ordinary
differential structure of the equivalent system (112), we are able to elude these techniques and
work directly on the deterministic systems.

Proposition 75 Conversely, if the generated set V 0
0

reduces to f0g ; then the system (108) is approximately
null-controllable with 0 as initial mode.

Proof of Sufficiency Condition 71 for Approximate Controllability
Proof of Condition 71. In light of the Theorem [83, Theorem 1] and Proposition 73, one only

needs to show that the only solution of (112) remaining in kerB� is constant 0:
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4 Future research milestones

In this chapter we point out some open problems and research directions on which the study will
focus in the future. We present seven issues, each one having multiple open questions, aiming
both forward and backward stochastic differential equations.
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[35] Buckdahn, R.; Quincampoix, M.; Răşcanu, A., Viability property for a backward stochas-
tic differential equation and applications to partial differential equations, Probab. Theory
Related Fields 116, no. 4, pp. 485–504, 2000.

[36] R. Buckdahn; M. Quincampoix; G. Tessitore, A characterization of approximately control-
lable linear stochastic differential equations, in: Stochastic Partial Differential Equations
and Applications—VII, in: Lect. Notes Pure Appl. Math., vol. 245, Chapman & Hall/CRC,
Boca Raton, FL, pp. 53–60, 2006.
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