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Abstract. Quasicrystals, and particularly icosahedric materials, are of the greatest scientific and technological 
interest. In this paper we wish to focus on a morphological analysis of some quasicrystal polyhedrons by means 
of two fundamental laws of crystallography: the law of the constancy of interfacial angles and the law of rational 
indices. We begin to organize the quasipolyhedrons in crystallographic systems and classes of symmetry. The 
icosahedric system (or quasicubic system) is defined by its specific axial relation: a ≈ b ≈ c; α ≈ β ≈ γ ≈ 90°. 
The icosahedral class is defined by its specific symmetry formula, presented in its extended form as: 3L2 12L2 
10L3 6L5 3π 12P2C. The icosahedron, the regular pentagonal dodecahedron and the rhombic triacontahedron 
has been analysed: interfacial angle were measured on 3D drawings, stereographic projection and geometrical 
calculation. We introduced the new principle of corresponding crystal-to-quasicrystal, c-to-qc. A new 
crystallographic code was necessary to describe corresponding c-to-qc. The other new and important results are 
the folowing. Icosahedron is not a simple quasipolyhedron; it is a combination of two simple quasipolyhedrons: 
the qoctahedron and the qpentagonal dodecahedron. 
Its complete notation is q{111}q{520}. The rhombic triacontahedron is a combination of a qcube and a 
qdiplohedron, being noted by q{100}q{321}. The qcube and the qoctahedron cannot exist as simple 
quasicrystals. All faces of icosahedron and rhombic triacontahedron were noted with 3 Miller indices (hkl), in 
agreement with the law of rational indices. It results that the pentagonal quasicrystals structures are 3D. 

Key words: quasicrystals, icosahedric system, icosahedral symmetry class, Miller indexing, icosahedron, 
regular pentagonal dodecahedron, rhombic triacontahedron. 

Résumé. Dans le présent ouvrage nous définissons pour la première fois un nouveau système cristallographique, 
conformément à sa relation axiale spécifique: a≈b≈c; α≈β≈γ≈90°; nous allons le nommer système icosaédrique 
ou quasi cubique. Nous allons encore définir la classe de symétrie icosaédrique selon sa formule de symétrie 
spécifique: 3L2 12L2 10L3 6L5 3π 12P2C. On introduit par là le nouveau principe de la correspondance, cristal-
quasicristal, c-qc. Nous avons été obligés d’introduire un nouveau code cristallografique pour pouvoir décrire 
la transformation c-qc. Nous décrivons en détail les principaux quasicristaux qui appartiennent au système 
icosaédrique et à la classe de symétrie icosaédrique: l’icosaèdre, le dodécaèdre pentagonal régulier et le 
triacontaèdre rhombique. Nous présentons aussi les dessins 3D pour ces trois quasicristaux, auxquels nous 
annexons leurs projections stéréographiques et les indices Miller (hkl). Suite à l’analyse quelques résultats vont 
surprendre: le q-cube et le q-octaèdre ne sauraient exister en tant que polièdres  individuels, bien au contraire 
ils peuvent apparaître seulement combinés avec d’autres quasicristaux simples. La notation des facettes de 
l’icosaèdre, du dodécaèdre pentagonal régulier et du triacontaèdre rhombique avec trois indices Miller (hkl) 
rationnels, entiers et petits, démontre que la structure de ces quasicristaux est de type 3D. 

Mots-clés: quasicristaux, système icosaédrique, classe de symétrie icosaédrique, indices Miller, l’icosaèdre, le 
dodécaèdre pentagonal régulier, le triacontaèdre rhombique. 

INTRODUCTION 

The discovery of quasicrystals has actually allowed for the discovery of a new state of 
condensed matter, quite similar, yet never identical with the crystalline state (Shechtman et al. 1984). 
Considerable progress has been recorded in the synthesis of some metallic quasimaterials obtained by 
rapid solidification from melts, at cooling rates >106 K sec-1; formation and growth of metallic 
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quasicrystals have been explained by nucleation from undercooled melts, due to the icosahedral short-
range order already present in liquid alloys (Kelton et al. 2003; Sachdev and Nelson 1985). Soft 
quasicrystalline materials have been largely explored both theoretically and experimentally 
(Hayashida et al. 2007; Lifshitz and Diamant 2007). Colloidal quasicrystals are spontaneosly formed 
by self-assembly in colloidal solutions (Fisher et al. 2011; Denton and Löwen 1998); micellar phases 
can also exist with quasiperiodic structures (Zeng et al. 2004; Fischer et al. 2011). Colloidal inorganic 
nanoparticles can self-assemble into binary aperiodic superlattices (Talapin et al. 2009). The fullerene 
materials C60 and C80 are quasicrystals (Weeks and Harter 1989; Kroto et al. 1985; Boo 1992, Fowler 
and Myrvold 2010). Thousands of proteins have an icosahedric quasicrystalline structure (Branden 
and Tooze 1999; Marck and Zhou 1992). 

The unity of two – structural and morphological – states may be evidenced by a few important 
observations, such as: 

(i) The crystals and quasicrystals have a polyhedric shape, meaning that they have very similar 
but never identical atomic structures, as some of them are strictly periodic, others are non-periodic. 
Accordingly, the polyhedrons are also different, namely specific crystalline and specific 
quasicrystalline, as demonstrated in the present investigation. Example: pentagonal dodecahedron 
(crystal) and regular pentagonal dodecahedron (quasicrystal). We named them here as corresponding 
crystal/quasicrystal.  

(ii) It is important to know how high or how low is the effect of the five-fold symmetry axes 
upon both their structure and morphology. In the field of crystal physics the structural transfomations 
of long-range order from quasiperiodic to translational and the mechanism of the quasicrystal-to- 
crystal phase transition is largely studied (Liu et al. 1991; Rochal et al. 1996; Rochal 1997; Rochal 
and Lorman 2003; Stauerer 2000). 

(iii) There are also morphological transitions from crystal – to – quasicrystal e.g. from 
pentagonal dodecahedron – to- regular pentagonal dodecaheron.  

(iv) The symmetry is the unitary criterion for investigations, systematisation and  hierarhisation 
of both crystals and quasicrystals.  

(v) The symmetry controls the structure and the morphology of crystals and quasicrystals. The 
symmetry of periodic structures and correspondingly the morphology of crystals controls the well 
known restrictions: there are only 7 crystallographic systems, only 32 symmetry classes, only 14 
Bravais lattices and only 230 different space groups. 

(vi) The symmetry laws were not applied to quasicrystaline specific polyhedrons: we have no 
system, nor a symmetry class (not completely identical with point groups). We have no hierarchy and 
no systematisation of quasicrystals. 

(vii) Steinhardt (1996) said: “as an exemple of the application of symmetry principles, the 
subject of quasicrystals is still in a primitive stage” (p. 14270). Chidambaram (2004) sustains that 
“Quasicrystals have been studied by using quasiperiodic functions and by a variety of experimental 
methods – mainly diffraction and electron microscopy – and various tiling-based and other models 
have been developed, but still the problem of a detalied and satisfactory structural model for 
quasicrystals remains elusive” (p. 68). Finally, Grimm and Schreiber (2005) consider that: “While 
there exist sophisticated structure models for various quasicrystals, many important questions remain 
unanswered...” (p. 95). 

In the present study, the law of constance of interfacial angles and the law of rational indices are 
applied to quasicrystalline polyhedrons. The interfacial angles are determined by three independent 
methods, namely: (i) 3D drawings; (ii) by means of a stereographic projection on the Wulf net; (iii) by 
geometrical calculations. The Miller indices (hkl) of all quasicrystal faces were determined by a new 
principle of corresponding crystal/quasicrystal (c-to-qc). A new crystallographic code was necessary 
to describe c-to-qc. Examples: cube{100}-to-qcube q{100}; octahedron {111}-to-qoctahedron 
q{111}; diplohedron {321}-to-qdiplohedron q{321}.  
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The icosahedric system has been defined by its specific axial relation (and by its specific 
elementary cell). The icosahedral symmetry class has been defined by its specific symmetry formula. 
We use the extended symmetry formula (Flint 1971), known as expressing more directly, and more 
completely the symmetry of a quasipolyhedron. The Hermann-Mauguin notation will be used when all 
systems and symmetry classes of the quasicrystals will be defined. 

The icosahedron, the regular pentagonal dodecahedron and the triaconthaedron are only the first 
three quasicrystals belonging to the icosahedric system and to the icosahedric class. For these three 
quasipolyhedrons, the 3D drawings, the stereographic projections and the Miller indices of all 
quasicrystal faces are presented. Indexing …“proving that a structure is periodic, quasiperiodic or 
almost periodic” (Cahn et al. 1986). 

THE ICOSAHEDRIC SYSTEM 

A structural and morphological system is entirely defined by its axial relation, namely the 
relative lengths of the crystallographic axes (a, b, c) and of the angles between them (α, β, γ). In the 
icosahedric system, the crystallographic axes are three main two-fold symmetry axes. In the non-
periodic structures, quite naturally, these three axes are three 1D Fibonacci lattices, in which non-
periodicity is expressed through long (L) and short (S) segments. We therefore conclude the axial 
relation of the icosahedric system is: 

a ≈ b ≈ c 
α ≈ β ≈ γ ≈ 90° 

This axial relation indicates that the three X Y Z quasicrystalographic axes are only 
quasiortogonal to each other, and a, b, c are only quasiequals to each other. Unit cell angles are only 
approximately 90° (Fry et al. 1996, p 337). It results that for quasicrystals we must measure more 
exactly a, b, c and α, β, γ because the difference between periodic to quasiperiodic is very small. This 
axial relation fully defines the icosahedric system or quasicubic system. 

THE ICOSAHEDRAL CLASS 

The icosahedron, regular pentagonal dodecahedron and rhombic-triacontahedron models have 
been constructed The three symmetry operations of rotation, reflection and inversion were performed, 
which led us to the symmetry formula of the icosahedric class, presented in its extended form: 

3L2 12L2 10L3 6L5 C,  3π   12P2   –      – 
where: 

L = simple symmetry axis 
Ln = n-fold symmetry axis 
π = main symmetry plan 
C = symmetry center 
3L² = three main two-fold symmetry axes 
3π = three main symmetry plans 
P² = symmetry plan perpendicular to a symmetry axis L² 
– = no symmetry plan present 
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Group 15L² was decomposed into group 3L², representing the main symmetry axes, as they 
coincide with the three crystallographic axes, while group 12L² stands for the other two-fold symmetry 
axes. The symmetry planes perpendicular to the three main symmetry axes are noted as 3π.  

 
Fig. 1 – Stereographic projection of the icosahedral symmetry class: symmetry axes and planes 

(identical with the point group 53m ). 

Figure 1 plots the stereographic projection of the symmetry elements (symmetry axes and 
symmetry planes) contained in the symmetry formula of the icosahedral class, identical with its 
corresponding point group 53m , largely presented by Shechtman et al., 1984; Cahn et al., 1986.  

THE ICOSAHEDRON 

The icosahedron is encantered both in metallic alloys (Stauerer and Deloudi 2009), and in 
crystallized proteins, especially in the field of animal-viruses (Indelicato et al. 2012) and vegetal-
viruses (Savithri et al. 1989; Matthews 1981). 

      
Fig. 2 – Icosahedron in its correct, standard orientation (a), and nonstandard 

orientation (b). 
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Figure 2 plots an icosahedron in standard orientation on the crystallographic axes (a) and also in 
nonstandard orientation, with one of the five-fold axes in vertical position (b). The stereographic 
projection of all faces of the icosahedron permitted to obtain its stereogram (Fig. 3).  

 
Fig. 3 – Stereogram of the icosahedrons. 

Analysis of the stereogram revealed that the icosahedron is not a simple quasicrystal, but a 
compound one, formed by two simple quasicrystals, namely: a quasioctahedron q{111} and a 
quasipentagonal dodecahedron q{hk0}. The 8 faces of the icosahedron are stereographically projected 
exactly in the points representing 8 octahedron faces, which means that these 8 faces of the 
icosahedron belong to a qoctahedron. 

The above observation is confirmed morphologically as well. The 8 faces belonging to the 
qoctahedron may be easily identified on the icoshaedron by simply drawing the octahedron both inside 
and outside the icosahedron (Fig. 4a, 4b). 

     
Fig. 4 – (a) Quasioctahedron inside of icosahedrons 

(b) Icosahedron inscribed in an octahedron. 
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Inside the icosahedron, the lines uniting the ends of the XYZ crystallographic axes may be 
drawn in order to obtain an octahedron; in other words, the octahedron may be inscribed inside the 
icosahedron, which leads to the following conclusions: 

– the crystallographic axes of the icosahedron and of the octahedron are perfectly superposed; 
– The 8 faces of the octahedron are parallel to the 8 faces of the icosahedron; consequently, the 8 

faces of the icosahedron form 4 families of octahedron reticular planes, namely: family ( )111 , ( )1 11 ; 

family ( )111 , ( )1 1 1 ; family ( )111 , ( )111  and family ( )1 11 , ( )11 1  according to the symmetry centre. 

Outside the icosahedron, an octahedron may be easily drawn, by inscribing the icosahedron 
inside the octahedron (Loreto et al., 1990, p. 163). It results: 

– 8 icosahedron faces coincide exactly with 8 octahedron faces; 
– again, 8 icosahedron faces represent 8 octahedron faces. The notation in Miller indices is the 

same for the octahedron faces and for the 8 faces of the icosahedron; 
– the five-fold axes of the icosahedron modify in no way the 8 faces of the octahedron. The 

whole structure corresponding to the families of octahedric planes is not modified by pentasymmetry. 
The 8 faces of the icosahedron have been precisely identified. There follows the identification of 

the other 12. Obviously, these 12 faces should belong to a dodecahedron. The five-fold axis suggests a 
pentagonal dodecahedron. 

A family of pentagonal dodecahedrons therefore exists (Table 1); each pentagonal dodecahedron  
may be specifically determined, according to the interfacial angles. 

Table 1 

A family of  pentagonal dodecahedrons 

Positive Negative 
{410} {140} 
{310} {130} 
{520} {250} 
{210} {120} 
{530} {350} 
{320} {230} 
{430} {340} 
{540} {450} 

 

 
Fig. 5 – Ecuatorial section in the plane of XY axes of the icosahedron (a), and interfacial angles (b) 
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The interfacial angles between 2 faces of a pentagonal dodecahedron (more precisely, others 
than the previously identified octahedron ones), intersecting according to a common edge, namely 
angle ((hk0)Λ 0)k(h  of Figure 5a, were measured on a 3D icosahedron (Fig. 5b). The value obtained 
was (hk0)Λ 0)k(h =41.81º. This angle was calculated geometrically, the value obtained being 41.50º, 
namely very similar to that of the interfacial angle (520)Λ 0)2(5  of 43.36º, corresponding to the pentagonal 
dodecahedron {520}. Stereographic projection of the 12 faces of the pentagonal dodecahedron {520} 
(Fig. 6) evidenced that the poles of the 12 icosahedron faces are stereographically projected quite close 
to the stereographic poles of the pentagonal dodecahedron {520}.  

The difference of the interfacial angle between quasicrystal q{520} and crystal {520} is of 
43.36º – 41.50º = 1.86°. Pentasymmetry modified the structure of the pentagonal dodecahedron {520} 
with a very low angular value, of only 1.86, for obtaining the quasicrystal q{520}. 

 
Fig. 6 – Stereogram of the pentagonal dodecahedrons 

Consequently, there exists a pair of corresponding polyhedrons: the pentagonal dodecahedron 
crystal {520} and the qpentagonal dodecahedron  quasicrystal q{520}. It shows that: 

(i) the icosahedron is composed of a quasioctahedron q{111} and a qpentagonal  dodecahedron 
q{520}; 

(ii) the notation of the icosahedron is q{111}q{520}; 
(iii) the quasioctahedron cannot exist as an individual quasicrystal, but only in combination with 

the qpentagonal dodecahedron q{520}, thus forming together the quasicrystal known as icosahedron. 

MILLER INDICES OF THE ICOSAHEDRON FACES 

The octahedron and the qoctahedron have similar Miller (hkl) symbols, once the orientation of 
faces (111) of the qoctahedron on the reference axes remained unmodified as an effect of 
icosahedron’s pentasymmetry. The 8 faces of the icosahedron are identical with the 8 faces of the 
octahedron. The Miller indices of these 8 icosahedron faces are the following (Fig. 7a): 

( )111 ; ( )111 ; ( )1 11 ; ( )1 11 ; ( )1 11 ; ( )11 1 ; ( )11 1 ; ( )1 1 1 . 
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Consequently, octahedron {111} is identical with qoctahedron q{111}. These two corresponding 
polyhedrons, namely octahedron {111} and qoctahedron q{111}, have identical stereograms (Fig. 7b). 

The 8 octahedric faces of the icosahedron alternate with the 12 faces belonging to the pentagonal 
dodecahedron q{520}.The Miller indices of the faces of the qpentagonal dodecahedron q{520} are the 
following: 

(520); 0)2(5 ; 20)5( ; 0)25( ; (205); 05)2( ; )5(20 ; )502( ; (052); )2(05 ; 2)5(0 ; )25(0 . 

  
Fig. 7 – Miller indices of the icosahedron faces: on the icosahedron (a), and on the stereogram (b). 

THE REGULAR PENTAGONAL DODECAHEDRON 

The world of crystals registers no regular pentagonal dodecahedron; it is specific to the 
quasicrystalline, aperiodic and pentasymmetric substances. Identification of the corresponding crystal 
of this quasicrystal in the family of pentagonal dodecahedrons is essential. The same methods were 
applied, namely: interfacial angles, stereograms and geometrical calculations. 

The interfacial angles specific to the corresponding pentagonal dodecahedrons, namely crystals and 
quasicrystals, are presented in Table 2. Geometrical calculations of the interfacial angle (hk0)Λ 0)k(h  
for the regular pentagonal dodecahedron gave a value of 63.42º. Further on, this angle was measured 
on a 3D section through the regular pentagonal dodecahedron, the result obtained was 63.43º. The 
angle was compared with the interfacial angles (hk0)Λ 0)k(h  specific to irregular pentagonal 
dodecahedrons (crystals, Table 2). The closest value obtained, of 61.55º, is specific to the irregular 
pentagonal dodecahedron {530}(crystal). The difference of the interfacial angle between the 
quasicrystal called regular pentagonal dodecahedron and the one called irregular pentagonal 
dodecahedron is 1.87º. Such a difference expresses the effect of the five-fold symmetry axis upon the 
structure of the irregular pentagonal dodecahedron {530}, which transforms it into its corresponding 
quasicrystal q{530}, defined as a regular pentagonal dodecahedron. 

All faces of the positively and negatively regular pentagonal dodecahedron (Figs. 8a and b) were 
noted in Miller indices, according to the principle of the corresponding polyhedrons. Figure 9 renders 
the stereographic projection of these two polyhedrons – q{530} and q{350}. 
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Table 2 

Interfacial angles of the pentagonal dodecahedrons, qpentagonal dodecahedrons and the difference 
between the crystal-quasicrystal corresponding polyhedrons 

Crystals 
(according to Ford 1958, p. 82) 

100Λhk0 hk0Λ 0kh  

100Λ410 = 14º02 410Λ 014 = 28º04 

100Λ310 = 18º26 310Λ 013 = 36º52 

100Λ520 = 21º48 520Λ 025 = 43º35 

100Λ210 = 26º34 210Λ 012 = 53º07 

100Λ530 = 30º57 530Λ 035 = 61º55 

100Λ320 = 33º41 320Λ 023  = 67º22 

100Λ430 = 36º52 430Λ 034 = 73º44 

100Λ540 = 38º39 540Λ 045 = 77º19 
Quasicrystals 

q100Λq520 = 20º75 q520Λq 025 = 41º50 

q100Λq530 = 31º71 q530Λq 035 = 63º40 
Difference between crystal/quasicrystal 

100Λ520 = 1º13 520Λ 025 = 1º86 

100Λ530 = 1º14 530Λ 035 = 1º85 
 
 
 
 

 
 

Fig. 8 – Miller indices of the faces of the qpositive q{530} (a), and qnegative 
regular pentagonal dodecahedron q{350}(b). 
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Fig. 9 – Stereograms of qpositive q{530} (a) and qnegative q{350} (b) regular 

pentagonal dodecahedrons 

The folowing results were obtained: 
(i) the existence of the corresponding crystal/quasicrystal polyhedrons in the family of 

pentagonal dodecahedrons is once more demonstrated; 
(ii) the structural difference, in terms of interfacial angles, between a crystal and its 

corresponding quasicrystalline is very small (1.87º); 
(iii) the corresponding polyhedrons: pentagonal dodecahedrons {530} and qpentagonal 

dodecahedron, q{530}) are quasiidentical.  

THE RHOMBIC-TRIACONTAHEDRON 

The rhombic-triacontahedron is a polyhedron composed of 30 faces: 6 belong to the qcube: 
(100); 00)1( ; (010); 0)1(0 ; (001) and )1(00 , and 24 faces, respectively, belong to a quasicrystal 
q{hkl} (Fig. 10).  

 
Fig. 10 – Miller indices of the rhombic triacontahedron faces. Fig. 11 – Stereogram of the rhombic triacontahedron.
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The five-fold axis affects the cube in  no way. However, this cube cannot exist as an independent 
polyhedron, but only in combination with another qcrystal. In the case of the triacontahedron, the 
qcube is combined with a qcrystal {hkl} from the icosahedric system, which has 24 faces. The normals  
to these 24 faces coincide exactly with the two-fold symmetry axes. Two complementary methods are 
available for finding out the polyhedron to which these 24 faces belong, namely: 

(i) stereographic projection 
(ii) 3D drawing of the triacontahedron. 
Figure 11 illustrates the stereographic projection of the triaconthaedron; its 24 faces are 

stereographically projected in the very vicinity of the corresponding crystal, called diplohedron {321}, 
(at distances of only 1 degree). It results that the 24 faces of the triacontahedron belong to the 
diplohedron {321}. 

The angle between the normals to the faces (321)Λ 1)2(3  = 64.37° was measured on the 3D 
drawing of the triacontahedron. In the case of the diplohedron {321} crystal, this angle is 63.26°. The 
difference between the diplohedron crystal and the diplohedron quasicrystal is 64.37° – 63.26° = 
1.11°. For the interfacial angle (100)Λ(321), the difference is only 0.43°. This method confirms once 
more that the 24 faces of the triaconthaedron belong to the diplohedron {321}. The triacontahedron is 
a quasicrystal composed of a qcube q{100} and a qdiplohedron q{321}. The triacontahedron is noted 
as q{100}q{321}. The difference registered between the diplohedron crystal {321} and its 
corresponding form, quasicrystal q{321} is 1 degree. 

IMPLICATIONS 

We have defined the icosahedric system (or quasicubic system) by it specific axial relation: a ≈ b 
≈ c; α ≈ β ≈ γ ≈ 90°. We have now the elementary cell of the icosahedric quasicrystals, named qcell. 
The first implication is a more accurate determination of lattice parameters of icosahedric 
quasicrystals, avoiding to confuse them with a cubic one. The icosahedric system is a fundamental 
reference for all icosahedric materials, inorganic (metalic alloys) and organic (proteins and polymers). 

Our new principle of corresponding crystal – to – quasicrystal introduces a new philosophy in 
these structural and morphologic transitions, from quasiperiodicity to periodicity and from polyhedron 
to quasipolyhedron. We can describe them by the new code: crystal – to – quasicrystal introduced in the 
present paper. Examples: cube – to – qcube; octahedron – to –qoctahedron; pentrgonal dodecahedron – 
to – qregular pentrgonal dodecahedron; diplohedron – to – qdiplohedron. Stereographic projection is a 
good instrument to evaluate morphological transition that means to express quantitatively the deformation 
of crystal – to – quasicrystal. The morphological transformations, in terms of interfacial angles, are: 

• In the corresponding cube – to – qcube and octahedron – to –qoctahedron the deformation is zero; 
• The irregular pentgonal dodecahedron {520} is transformed into a regular pentrgonal 

dodecahedron by a deformation  of only 1.86° interfacial angle; 
• The diplohedron {321} is transformed into qdiplohedron q{321} by a deformation  of only 

1.11° interfacial angle. 
Furthermore, a quasicrystal seems to be the result of structural coexistance of periodic – to – 

quasiperiodic. Example: icosahedron is a coexistance between a qoctahedron (periodic) and a 
qpentagonal dodecahedron ( quasiperiodic). 

The icosahedral symmetry class has been defined by its specific .symmetry formula 3L2 12L2 
10L3 6L5 3π 12P2C. The icosahedron, the regular pentadonal dodecaherdon and the rhombic 
triacontahedron have been analysed: interfacial angles were measured on 3D drawing and 
stereographic projection along with geometrical calculation were performed. Surprising results and 
implications are of the following: 
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• qcube and qoctahedron cannot exist alone as a simple quasicrystals 
• icosahedron is not a simple quasipolyhedron; it is a combination of two simple quasipolyhedrons: 

the qoctahedron and the qpentagonal dodecahedron; 
• rhombic triacontahedron is a combination of a qcube and a qdiplohedron. 
Miller indexing of quasicrystals is not satisfyingly solved at present. “Exact mathematical 

indexing of the faces of icosahedral convex polyhedra necessarily involves irrational numbers” 
(Loreto et al. 1990 p.176). The results of our investigation suggest the following new solutions: 

• pentagonal quasicrystal structure and morphology are 3D; 
• the standard scheme with six icosahedral base vectors seems to be not necessary, at least for 

pentagonal quasicrystals. The principle of corresponding crystal – to – quasicrystal allow us to note all 
the quasicrystal faces with only three Miller indices (hkl), in total agreement with the law of rational 
indices.  

The validity of fundamental laws of crystallography for quasicrystals was proved. 
Finally, we are going to ask the question “what is the relation between an icosahedral virus 

capsid and the orientation of Watson-Crick’s double helical DNA model inside a virus capsid?” Today 
we can only speculate that the angle of 36° between two adjiacent two-fold axes of the icosahedron is 
exactly the angle of 36° of the right-handed rotation between base pairs that produces a double helix 
with 10 base pairs per turn. Moreover, 2 × 36° = 72°, the normal interfacial angle between the normals 
of two qoctahedron faces of the icosahedron. 
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