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1. representations

Let 
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(0,2] and let M be a positive stable random variable with parameter 
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, Re s > 0. Further, let 
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 be an integer and let S
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 be a symmetric (about 0) stable random vector (Press [16, p.158]) whose characteristic function is given by 
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where 
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is positive definite; here ‘ T ’ stands for transposition. To avoid ambiguities, it will be assumed that no two of the 
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’s are proportional. In applied fields the most frequent case is m = 1, which leads to 
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. The value 
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= 2 corresponds to normality.
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Property 1.1 Let 
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 is distributed as the p-dimensional random vector
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where the 
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’s are independent p-dimensional random vectors whose coordinates are independent and identically normally distributed N(0,2), and the Mj’s are independent positive stable random variables with parameter 
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, also independent of the Nj’s.

Remark 1.2 There exist more general representations than (1) (e.g. Samorodnitsky and Taqqu [19, Equation (2.5.3)], Modarres and Nolan [15]); see also de Silva [20]). But for our purposes the preceding property is sufficient.

2. Simulation

For the normal case (
[image: image23.wmf]a

= 2) there exist simulation algorithms.

Property 1.1 leads to a simulation algorithm for symmetric stable random vectors by making use of positive univariate stable random variables. Next, we can generate a positive stable random variable by the method proposed by Chambers, Mallows, and Stuck [4] that relies on results in Ibragimov and Chernin [7] and Kanter [12].
Another algorithm for generating a three dimensional symmetric stable random vector is to be found in Uchaikin and Gusarov [21]. A comparative simulation based study of the algorithms in [9] and [21] was done by Boucher [3], who showed the advantages of that in [9].
Since we know how to simulate univariate/multivariate symmetric stable random variables, we are also able to simulate univariate/multivariate Linnik random variables using univariate positive stable random variables.
Devroye [5] provided a simple and elegant algorithm for simulating univariate Linnik random variables. In Jacques, Rémillard and Theodorescu [9, p. 217] we indicated an algorithm for the multivariate symmetric case, based on Property 1.1. Recall that for 
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, ’s, the characteristic function of the multivariate Linnik distribution is given by
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The associated probability density function will depend on x via 
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. For the case 
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= 2 (which is widespread in applied fields) and m = 1, we obtain after some manipulations and for 
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which involves the modified Bessel function 
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 of the second kind of order 
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. The last expression clearly links Linnik distributions to 
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 functions.
If G(
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) is a gamma (
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,1) random variable independent of S(
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), then the characteristic function of the random vector:
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. Consequently, the simulation of L(
[image: image40.wmf]a

,
[image: image41.wmf]b

) amounts to the simulation of S
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 and G(
[image: image43.wmf]b

). We also mention the algorithm in Kozubowski [13].
3.Tail behavior
For 
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 > 0 we consider the family of all random variables X for which the tail property
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 holds, where c is a positive constant, generally depending on 
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 and possibly on other parameters. According to Mandelbrot [14], we refer to it as the Paretian family of index 
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. For  
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(0,2), stable random variables (symmetric or not) are Paretian, from which we conclude (Jacques, Rémillard, and Theodorescu [9, pp. 214-216]) that Linnik random variables are also Paretian.
We now assume that m = 1. We consider the amplitudes (Euclidean norms) |S
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| and |L(
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,
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)|. In certain applications, the only observed data are such quantities. This is the case in particular for satellite and radar data (Anastassopoulos et al. [1] and Raghavan [18]).
Next, we examine the tail behavior of these amplitudes. The following property complements previous results obtained by Jacques, Rémillard, and Theodorescu [9].
Property 3.1 Let 
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We have
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and
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where
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and  N is a p-dimensional centered Gaussian vector with covariance matrix 2
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.
Proof. Property 1.1 implies that S
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 have the same distribution, where  M is a positive stable random variable with parameter 
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/2. Now, consider the tail behavior of  M ([9, Proposition 2.2]) or, equivalently, that of 
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. If we take into account the effect of multiplication on the asymptotic behavior of the upper tail probability ([9, Lemma 2.1]), then we are led to (2). Applying again the same ‘multiplication’ argument, we obtain (3). 
When observed data are amplitudes, results such as (2) and (3) together with techniques described in Hall [6] may be used to find estimators for the tail index 
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Remark 3.2  For q = 1, Property 3.1 implies:
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where 
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Hence the amplitudes |S
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and (4) and (5) can be rewritten accordingly.

Remark 3.3 The amplitude |L(
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)|  was obtained from |S
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| by multiplication with the (1/
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)th power of a gamma random variable; in fact, the preceding results hold for any nonnegative random variable which has moments of appropriate orders.
Remark 3.4 If 
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 denotes the diagonal matrix formed with the eigenvalues of 
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, then the corresponding Linnik amplitudes have the same law. The same is true for the stable amplitudes.

Random variables as 
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  are related to the so-called K distributions; for 


 we obtain the generalized K probability density function (Jakeman and Tough [10, Eq. (2.11)] and Barakat [2]), which can be easily simulated as the product of two independent square roots of gamma variates. Replacing gamma by generalized gamma variates broadens this family, leading to the so-called GC-distributions (Anastassopoulos et al. [1]) used in radar clutter statistics.[image: image80.wmf]2
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 and 
For many years K distributions have provided promising models in connection with certain problems in electromagnetic scattering from physical media (Raghavan [18]), SAR (synthetic aperture radar) imagining, geophysical remote sensing (Joughin, Percival, and Winebrenner [11]), high resolution radar clutter (Anastasopoulos et al. [1]).  Several methods for parameter estimation also exist (Raghavan [17], Joughin, Percival, and Winebrenner [11], Iskander and Zoubir [8]). Additional literature related to K distributions and their application in modeling weak scattering might be found, e.g., in the cited articles. Here we want to emphasize the close link between K and Linnik distributions, which yields relatively simple simulation algorithms and, consequently, less computational manipulations.
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