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Abstract. The Bose-Einstein energy spectrum of a quantum gas, confined in a rigid (cubic) box, is discrete and strongly dependent on the box geometry and temperature, for low product of the atomic mass number, Aat and the adiabatic invariant, TV2/3, i.e. on ( = AatTV2/3. Even within the approximation of noninteracting particles in the gas, the calculation of the thermodynamic properties of Bose-Einstein systems turns out to be a difficult mathematical problem. It is solved in the textbooks and most papers by approximating the sums by integrals. The present study compares the total number of particles and the total energy obtained by summing up the exact contributions of the eigenvalues and their weights, for defined values of (, to the results of the approximate integrals. Then, the passage from sums to integrals is done in a more rigorous manner and better analytical approximations are found. The corrected thermodynamic functions depend on (.  The critical temperature is corrected also in order to describe more accurately the discrete Bose-Einstein systems and their onset of the phase transition. 
1. Introduction
The Bose-Einstein systems are described usually by continuous thermodynamic functions, which are dependent on kinetic energy, temperature and chemical potential, but is independent on the container size and shape (considering the quantum gas with a very large number of identical particles and stored in a large container) [1-9]. 

In Bose Einstein condensation (BEC) experiments, the quantum gas is confined in a trap using an external potential. This confinement may be reasonably replaced by a free particle gas, which is placed inside of a virtual three-dimensional rigid box. The previous attempts to calculate the effects of the container size on the boson gas thermodynamics have used the (Weyl-Pleijel) asymptotic state density corrections only. These corrections were relatively small, but increasing with the box size decrease. More recently, a number of papers calculated the effect of trap dimension and size on BEC [10-21] taking account of the system discreteness in this phenomenon.

When working with systems of identical particles, one can use the grand canonical ensemble in order to dispense of the particle number conservation. The grand canonical ensemble allows the number of particles and the energy in the system to fluctuate, but keeps the chemical potential fixed. This is useful for systems, which undergo phase transitions. For an ideal gas of identical particles each of mass m, the grand partition function can be written under the form [see for example, 8]:
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where H and N are the kinetic energy and total particle number operators and ( is the chemical potential.

Assuming that the ideal quantum gas is confined in a cubic box, with size L and with periodic boundary conditions, the momentum operator for a particle has the following eigenvalues:
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where k is the  wave-vector of the particle and qi are integer numbers and zero (each triplet defining a system state). 

The kinetic energy operator for a single particle is 
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where q is an integer state number and (0 – the inter-level energy. The energy levels, (q, of the particle in a box, can be obtained resorting to the Brillouin’s model of kinetic energy quantising through the intermediary of momentum quantising, by imposing periodicity conditions on the walls.  This procedure allows the exchange of energy and particles between the box and the thermostat and accordingly, makes possible the use of quantum statistics via the grand ensemble partition. 


The energies of the box states, ((q), are distributed in a discrete spectrum defined by the spatial quantisation rule for the momentum (wave-vectors):
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The number of degenerate states in the box is strongly and randomly fluctuating. The degeneracy occurs due to the discrete spatial orientations of the state wave-vectors with the same quantum number (q). 

The weight (degeneracy) of state with a quantum number q can be found, for large level numbers (asymptotic case), as [17-21]:
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The average of the distribution g(q) follows the asymptotic trend from Eq.(5). 


For particle confinement in relatively small volumes and at relatively small temperatures (we shall define later what "relatively small" means), we have to account for the random distribution of the degeneracy. One can expect a discrete and irregular kinetic energy spectrum. We can define the quantum degeneracy factor:  
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which includes the spatial quantization effects. We have checked that the factor \SYMBOL 122 \f "Symbol"(q) is randomly fluctuating around the value 1 by the calculation of the average number of states on constant frequency intervals. The result is that, although the degeneracy fluctuations are large for a box with small number of states (and must be taken into account), the average number of states tends to the asymptotic value very rapidly. For a number of states larger than (100, the classical equation (5) can be safely used. 


The total degeneracy in an atomic gas, gT, is the product of the box degeneracy, gq=g(q) and the intrinsic spin degeneracy of the atoms, gS =2S+1 (where S is the total spin of the atoms): gT = gq ( gS..


Let us denote by nq the number of particles with momentum pq. Then, the particle number operator can be written as N =(q nq and the kinetic energy operator is  H =(q nq(q . The grand partition function becomes:
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Through agency of the grand potential, the particle number in the gas is:
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and the total energy can be calculated as:
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We can write also:
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with ( - the chemical potential (< 0), 
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k – the Boltzmann constant,  T – the absolute temperature of the boson quantum gas, 
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 - the fugacity, and Aat – the atomic mass number (m = Aat m0p). Using the quantum degeneracy factor defined in (6), the boson spectrum (10) can be put in the form:
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The Bose-Einstein energy spectrum (BEES), from Eq.(11), is discrete for a small number of states in the cubic box, as shown in Fig.1. From this graph, one can observe that the quantum effects may occur in cubic cavities with micrometer sizes, at temperatures around (K, which are presently reached by evaporation and laser cooling [21]. These spectra show that, the higher the adiabatic invariant, L2T, the higher the number of levels, for specified particles (atoms) in the cavity. At a certain resolution limit, the spectrum is obtained by averaging the energy lines (( (1) and the continuous BEES is reached (dashed graph in Fig.1). 

We can introduce a reasonable superior limit of the number of states in the box, qT , which brings a significant contribution to the BEES. At high energies, the exponential term dominates and \SYMBOL 122 \f "Symbol"(q) (1, so that Eq.(11) can be brought to the form:
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Considering A < 1 and neglecting the levels which bring a contribution of less than 10-2, one can parametrically truncate the Bose-Einstein distribution at the highest significant level number (HSL) in the box: 
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One can observe that, in the above conditions, the fugacity plays a minor role in this truncation and for any of its values, Eq.(12) ensures an over-evaluated value for qT. 

For Aat = 87 (Rubidium), L = 10 -4 cm and T = 10 –6 K,  Eq.(14) leads to: qT  (114.
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Fig. 1. 

Some conventional Bose-Einstein spectra (dashed lines) and discrete Bose-Einstein spectra (solid lines, joining the tops of the energy spectrum lines), for A = 0.99 and for the values of  ( = Aat L2 T , which are shown in each graph.

For Li7, one can find some more convenient conditions for double quantised box, namely: L = 10 (m and T ( 120 nK. For a precision of 10-3, one can take:  qT (15(( /() (137.

2. The statistical properties of the discrete BE gas in the cubic box

With the above notations, the Eqs.(8) and (9) can be written under the form:
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and:
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The total number of particles and the total energy of the free boson gas are described in many textbooks passing rapidly from sums to the integrals [see for example, 5]: 
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where N0 is the number of condensed particles and CGS-Gauss unit system was used. In the classical limit, [21]:
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Solving the integral Eq.(18) to obtain the particle number in terms of fugacity, we have generalized the result from [4] as:


[image: image30.wmf]....

5

4

3

2

)

(

5

2

/

3

4

2

/

3

3

2

/

3

2

2

/

3

2

2

/

3

+

+

+

+

+

+

=

=

÷

ø

ö

ç

è

æ

a

g

p

-

-

-

-

-

A

A

A

A

A

A

f

N


(20)

One can invert this function in order to obtain the dependence of the fugacity and of the chemical potential on N and (, which are shown in Fig.2. 
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Fig.2. The dependence of the fugacity on the number of particles in the quantum gas, Na (1000 – continuous line, 100-dashed line and 10 atoms – dotted line) and on the adiabatic invariant     (multiplied by the atomic mass number), (.

However, our procedure of building the grand canonical ensemble and the present cooling procedure, which is based on evaporation (which eliminates progressively the particles with the highest kinetic energy) lead to consider a variable particle number in the system. Thus, it is more correctly to calculate this number, with the approximate series for the integral from Eqs.(18) and (20), in function of a given fugacity and adiabatic invariant (().

One can remark that N-N0 increases monotonically with A and (. higher the fugacity in the DQB, the stronger the increase of N-N0 with (. The higher the fugacity in the DQB, the stronger the increase of N-N0 with (.

The replacement of sums by integrals must be done with increased mathematical rigor, for example using the modified Euler-Mac Laurin formula [22], which gives for the particle number:


[image: image33.wmf]5

.

0

/

1

2

/

1

0

/

1

0

/

1

1

2

24

1

1

2

1

2

1

/

=

g

a

-

g

a

-

¥

g

a

-

-

p

¶

¶

÷

ø

ö

ç

è

æ

+

-

p

-

-

p

+

÷

ø

ö

ç

è

æ

-

=

ò

ò

x

x

x

x

S

e

A

x

x

e

A

dx

x

e

A

dx

x

A

A

g

N


(22)

Considering:
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our calculations lead to:
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where 
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 and the function g3/2(A) is proportional to f2(A) and can be approximated using, for example, the development from (20). However that series is very slowly converging and for precise results, needs some tens of terms. 

Robinson gave formulae for the calculations of the integrals from (18) and (19), which are claimed to ensure a precision under 1% [3]. Improved formulae (of relative error ( 10-7) found  by us have the form:
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(a) We have compared the sum and integral results in Fig.3. One can remark that the finite sum gives smaller values for the active particles in the box than different evaluations of the integrals. Our analytical formula for the active particle number (23) is the closest to the exact result. The usual calculations lead to errors, which increase with ( (for example at ( = 2(10-12, when N-N0 ( 1150, the error of classical formula (20), still used in many works in these parameter range, arrives to ( 6%).

3. BEC in the cubic box with low adiabatic invariant

The onset of condensation occurs in the region, where the discrete distribution cannot be circumvented. Thus, it is interesting and of pedagogical value to discuss BEC without the continuous spectrum approximation in the cubic box with low adiabatic invariant. Recently, Ketterle and van Druten have considered this topic for particles in a 3D harmonic potential remarking the advantage of absence of diverging integrals and of a special role given to the ground level of the system [13]. Previous attempts to calculate BEC in a cubic box considered a non-zero ground level energy and an inter-level energy four times lower than that used by most authors [15]. This is in contradiction with explicit Landau’s hypothesis [5] and is difficult to be supported by the thermodynamic laws and the correspondence principle. 

In Fig. 4a, our result with finite summation:
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is compared to that given by the integral:
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One can remark that the direct summation has considerable  differences in comparison with the common considered ratio of condensed and total particle number. However, if we correct the main parameter, the critical temperature, as 
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, these graphs come much closer (Fig.4b). 

Our analytical approximation of sum by integral leads also to a corrected expression for the critical temperature:
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For the number of particles in the considered box, the correction becomes 
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, which is in a better agreement with the exact calculation.

4. The total energy of discrete Bose-Einstein system in the cubic box
In the cubic box, the total energy should be written by summing the state energies up to the highest significant one (characterized by qT):
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Fig.4. The ratio of condensed particle and total particle numbers for fixed fugacity, A=0.99:  

(b) by direct summation, versus ( =AatL2T [cm2(K]; 

(c) by direct summation (continuous) and by conventional equation (dashed), versus ( /(B  (T/TB ); 

(d) by direct summation (continuous) and by conventional equation (dashed), versus ( /(B.
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Again, the replacement of sums by integrals, as found in many text books, could be done with increased mathematical rigor, for example using the modified Euler – Mac Laurin formula [22], which gives, with same procedures as in Eqs.(22) and (24):
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We can calculate precisely the ratio of total energies of the particle gas in the box and in a classical (large) container with Eqs. (28) and (17):
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In the asymptotic limit, ((q) goes to 1 (by averaging over many and very close modes), F tends to 1, and one arrives to the conventional formalism. The corrective factor, F, is represented in Fig.5, in function of the parameter (, for A = 0.99. 

The best fit of the energy data obtained with sums can be obtained with accuracy of 0.1% using the function (Fig.5, with continuous line):
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Thus, with specified atoms and box size, the total energy in the box with low adiabatic invariant has a stronger dependence on temperature than is predicted by the conventional law. As the quantum gas confined in the box is emptied of kinetic levels, its total energy is strongly decreasing according to the new law:
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Eq. (30) and Fig.5 show that the asymptotic limit can be set for    F(( /() ( 1, at a conventional limit of (qmax/ ( ( 8, which leads to (qmax ( 76 (10-14 [cm2.K] and to  qT max ( 100.On the other hand, the lowest box mode with non-zero energy is 
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 and set an inferior limit to (qmin ( 0.76 (10-14 [cm2.K].

Thus, we can define the double quantisation regime of the cubic box in the range:

1 ( q ( 100
(33)

7.6 (10-15 ( (  ( 7.6(10-13    [cm2.K]
(34)

For given atoms, the box size and the temperature are reciprocal parameters in the box, i.e. the same effects (in the thermodynamics of the boson gas) can be obtained either by varying L2 = V2/3 or by varying T, if their product remains constant.

We can remark that, the discrete Bose-Einstein systems are characterized by finite and small number of particles. From Eq.(13) and (23), it is possible to calculate the number of particles at ( = 10-13[cm2.K], where the correction factor of the total energy is F ( 0.9, for A = 0.99. In the specified quasi-degenerate gas, there are N-N0 ( 9 particles. 

4. Conclusions


We have shown that the energy spectrum of a Bose-Einstein system, which is confined in a rigid cubic box with low adiabatic invariant, is discrete and depends strongly on the box size and temperature. The complex aspect of the spectrum, is the consequence of the random degeneracy distribution in the cubic box, which introduces an additional energy quantisation controlled by the adiabatic invariant (multiplied by the atomic mass number), ( = AatL2T and by gas fugacity, A (or alternatively, by the particle number). 

We have introduced a reasonable superior limit of the number of states in the box, which brings a significant contribution to this discrete spectrum. Then, the particle number of the Bose-Einstein system can be calculated by a finite sum, which give smaller values for the active particles in the box than different evaluations of the common used integrals. Our analytical formula for the active particle number is the closest to the exact result. 

In the BEC phase, one can remark that the direct summation is considerably different in comparison to the common considered ratio of condensed and total particle number. However, if we correct the main parameter, the critical temperature, these results are closer one to the other. Our analytical approximation of sum by integral leads also to a corrected expression for the critical temperature, which is in a better agreement with the exact calculation.

Furthermore, the total energy, obtained in this case by summing up the exact contributions of the eigenvalues and their weights for well-defined values of (, shows a faster (exponential) decrease to zero than it is classically expected, for ( ( 0.  For A = 0.99, the quantum effects occur in the range: 0.76(10-14 ( ( ( 76(10-14 [cm2(K]. In this regime, the box size and the temperature are reciprocal parameters in the sense that the same effects (in the boson gas) can be obtained either by varying L or by varying T, if their product remain constant. The lighter the gas atoms, the higher the temperatures or the box size, for the same effects in discrete Bose-Einstein systems, which are characterized also by small number of particles. 

 EMBED Word.Picture.8  
[image: image55.wmf]0.00E+000

2.00E-013

4.00E-013

6.00E-013

8.00E-013

0.0

0.2

0.4

0.6

0.8

1.0

Data: Data2_D

Model: user1

Chi^2 = 0.00003

P1

-5.7955E-15

±

3.5744E-16

P2

4.4057E-28

±

1.2039E-29

F=

EXP(P1*(1/

 g 

 )-P2*((1/

 g

 )^2))

F

g

  (

cm

2

K)



Acknowledgements. 

One of the authors (V.I.V.) thanks The “Abdus Salam” International Centre for Theoretical Physics, Trieste  (Italy) for the working stages at the Centre as a Regular Associate Member. Particularly, he wishes to thank Prof. Gallieno Denardo for his support in these visits. He wishes to acknowledge Prof. Herbert Walther for the useful discussions and for the privilege to be an external collaborator of Max Planck Institut für Quantenoptik.

References

1. Einstein A., Quantentheorie des einatomiger idealen Gases, Sitzungsber. Kgl. Preuss. Akad. Wiss., 261, 1924; 3, 1925.

2. London F., On the Bose-Einstein condensation, Phys. Rev. 54, 947, 1938.

3. Robinson J., Phys. Rev. 83, 678, 1951.

4. Born M., Atomic Physics, 8th Edition, Blackie Ltd., London, 1972.

5. Landau D., .Lifschitz E.M, .Pitaevskii L.P., Statistical Physics, 3rd Ed., Pergamon Press, 1980.

6. Huang K, Statistical Mechanics, J. Wiley, N.Y., 2d Ed.,1987.

7. Pathria R.K., Statistical Mechanics, Pergamon Press, Oxford, 1996.

8. Reichl L.E., A Modern Course in Statistical Physics, 2nd Ed, J. Wiley, N.Y., 1998.

9. Baierlein R., Thermal Physics, Cambridge Univ. Press, 1999.

10. Tino G.M., Inguscio M., Experiments on Bose-Einstein condensation, Riv. Nuovo Cimento, 22(4), 1(1999).

11. Bagnato V., Kleppner D., BEC in low-dimension traps, Phys. Rev. A, 44, 7439, 1991.

12. Ensher J.R,  Jin D.S., Matthews M.R., C.E. Wieman C.E., Cornell E.A., BEC in a dilute gas: measurements of energy and ground-state occupation, Phys. Rev. Lett.,77, 4984, 1996.

13. Ketterle W.,   van Druten N.J., BEC of a finite number of particles trapped in one or three dimensions, Phys. Rev. A, 54, 659, 1996.

14. Napolitano R., De Luca J., Bagnato V.,   Marquez G.C., Effect of a finite number of particles in the BEC of a trapped gas, Phys. Rev. A, 55, 3954, 1997.

15. Grossmann S., Holthaus M., Bose-Einstein condensation in a cavity, Z. Phys. B97, 319(1995)

16. Bormann P., J. Harting J., Muelken O.,  Hilf E.R., Calculation of thermodynamic properties of finite Bose-Einstein systems, Phys. Rev. A 60 (2), 1519, 1999.

17. Vlad V.I.,  Ionescu-Pallas N., Ro. Repts. Phys. 48(1), 3, 1996.

18. Vlad V.I.,  Ionescu-Pallas N., ICTP Preprint No. IC/97/28, Miramare-Trieste, 1997;  Proc. SPIE, 3405, 375, 1998.

19. Vlad V.I.,  Ionescu-Pallas N., Fortschritte der Physik, 48(5-7), 657, 2000.

20. Vlad V.I.,  Ionescu-Pallas N., Discrete Planck spectra, ICTP Preprint No.IC/2000/154, Miramare-Trieste, 2000.

21.  Vlad V.I.,  Ionescu-Pallas N., Discrete Bose-Einstein spectra, ICTP Preprint No.IC/2001/14

22. Ionescu-Pallas N., A new summation formula, UFTF 1-95, Western University of Timisoara (Romania),1995.

Received : April 11, 2002




Fig.3. The plot of the active number of particles in Bose-Einstein gas at fixed fugacity, A=0.99, versus ( =AatL2T [cm2(K] for direct summation (dots),  our sum approximation from Eq.(23) (continuous line) and improved Robinson’s approximation of integral from Eq.(24) (small dashes) .











Fig.5.The ratio between the total energy of the particles in the box and the total energy in a conventional container, F, in function of ( [cm2.K] for fixed fugacity, A =0.99. The points are the results of sums and the continuous line is the best fit with the exponential function from Eq.(30)  over this set of points.
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