[image: image1.wmf]1


PUBLISHING HOUSE
Proceedings of the Romanian Academy, Series A,
.
OF THE ROMANIAN ACADEMY
Volume 3, Number 1-2/2002.
2
A. Iarovici

3
Analytic solutions of orthotropic


 A GENETIC ALGORITHM FOR MODELING THE CONSTITUTIVE LAWS 

FOR THE LEFT VENTRICLE 

Ligia  MUNTEANU
[image: image190.png]


, Veturia CHIROIU
[image: image2.wmf]1

, Marco Scalerandi
[image: image3.wmf]2


 
[image: image4.wmf]1

Institute of Solid Mechanics, Romanian Academy


[image: image5.wmf]2

INFM-Dipartimento di Fisica del  Politecnico di Torino, Torino

Corresponding author: ligia_munteanu@hotmail.com
The central problem in modeling the dynamics of the heart is in identifying functional forms and parameters of the constitutive equations, which describe the material properties of the myocardium. The constitutive properties of myocardium are three-dimensional, anisotropic, nonlinear and time-dependent. In this paper the active and passive constitutive laws for the left ventricle are determined from experimental data by using a genetic algorithm. 
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1. INTRODUCTION


The dynamics of the left ventricle is the result of the contractile motion of the muscle cells in the left ventricular wall. Heart muscle is a mixture of muscle and collagen fibers, coronary vessels, coronary blood and the interstitial fluid. The fibers wind around the ventricle, and their orientation, relative to the circumferential direction, changes continuously from about 60
[image: image6.wmf]0

 at the endocardium to –60
[image: image7.wmf]0

 at the epicardium. This anisotropy influences the transmural distribution of wall stress. Recent models capture some important properties including: the nonlinear interactions between the responses to different loading patterns; the influence of the laminar myofiber sheet architecture; the effects of transverse stresses developed by the myocytes; and the relationship between collagen fiber architecture and mechanical properties in healing scar tissue after myocardial infarction (Bardinet, Cohen and Ayache [1,2], Huyghe., Van Campen, Arts and Heethaar [4,5], Van Campen, Huyghe, Bovendeerd and Arts [6]). 

A dificult problem in modeling the dynamics of the heart is in identifying functional forms and 
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parameters of the constitutive equations, which describe the material properties of the myocardium.

We consider in this paper the cardiac tissue as a mixture of an incompressible solid and an incompressible fluid (Munteanu, Chiroiu C. and Chiroiu V. [3]). The active and passive constitutive laws for the left ventricle are determined from experimental data (Bardinet, Cohen and Ayache [1,2]) by using a genetic algorithm. 

 2. Mathematical model

The underformed heart, in a stress-free reference state, is modeled as a super ellipsoid surface 
[image: image8.wmf]S

 (Bardinet, Cohen and Ayache [1]) 
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where the constants 
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 for a particular heart. For a sphere we have 
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. The 
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-axis corresponds to the 
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-axis of inertia of the super ellipsoid model. The muscle fibres in the ventricular wall are assumed to be parallel to the endocardial and epicardial surfaces.

The cardiac muscle is considered to be a mixture of two phases, a solid phase and a fluid phase. The equations of the beating left ventricle are composed from (Van Campen, Huyghe, Bovendeerd and Arts [6]): 

1. The equilibrium equation of the deformed myocardicum (by neglecting the inertia forces)



[image: image20.wmf]0

=

Ñ

-

s

Ñ

p

s


(2.2)

where 
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s

 is the effective Cauchy stress in the solid representing the stress induced by the              deformation in the absence of fluid and measured per unit bulk surface and 
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 the intra-myocardial pressure representing the stress in the liquid component of  the bi-phasic mixture. The total Cauchy stress tensor in the mixture is 
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2. Darcy’s law in Eulerian form:
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with 
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, the parameters 
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 (permeability tensor of the underformed tissue) and 
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( averaged porosity of the underformed tissue) being specified. Here 
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 is the Eulerian spatial fluid flow vector, 
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the permeability tensor of the underformed tissue, 
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 the deformation gradient tensor, 
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the Jacobean of the deformation, and 
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 the displacement vector, 
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3. Continuity equation (conservation of mass):


[image: image35.wmf]0

=

Ñ

+

Ñ

q

u

&


(2.4)

where dot means the material time derivative.

4. Pasive constitutive laws:
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with:
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Here 
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 is the isotropic energy function, 
[image: image44.wmf]E

 the Green-Lagrange strain tensor, and 
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 the effective second Piola-Kirchhoff stress tensor, split into an active stress 
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. The passive stress tensor is split into a component resulting from elastic volume change of the myocardial tissue 
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 described in the form of quasi-linear viscoelasticity as:
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with 
[image: image52.wmf]e

S

the anisotropic elastic response of the material, 
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 a scalar function (reduced relaxation function) derived from a continuous relaxation spectrum (Huyghe., Van Campen, Arts and Heethaar [5]) and 
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 the potential energy of deformation per unit volume.  

The form of the strain energy 
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 (2.3) and 
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are chosen so that 
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 are zero in the unstrained state and positive elsewhere, and 
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 are zero in the underformed state. The expression (2.3) satisfies those conditions. In this paper we consider for the strain energy function 
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 the expression of the ion-core (Born-Mayer) repulsive energy (Delsanto, Provenzano and Uberall [7]:
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where 
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 the repulsive range function and 
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 is the heart volume, and :
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 an arbitrary point. We suppose that 
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We mention that the values of the angles depend on the position 
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. Though the energy function (2.12) is referring to metallic bilayers and noble metals, we choose this form to be used in the description of the ventricle upon a closer analysis of the compatibility between the experimental data and analytical form for 
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.

5. Active constitutive laws (Van Campen, Huyghe, Bovendeerd and Arts [6] and Arts, Veenstra and Reneman [8]):
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where 
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is the first order Piola-Kirchhoff non-symmetric active stress tensor, related to the second Piola-Kirchhoff active stress by  
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 a constant associated with the load of maximum isometric stress. 

The stress tensor 
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 is convenient for some purposes; it is measured relative to the initial underformed configuration and can be determined experimentally. The cardiac muscle is striated across the fibre direction. The sarcomere length 
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 (the distance between the striations) is used as a measure of fibre length.  The experiments show that the active stress generated by cardiac muscle depends on time 
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, sarcomere length 
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 (Van Campen, Huyghe, Bovendeerd and Arts [6]). The active stress generated by the sarcomeres is directed parallel to the fibre orientation. The function 
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The set of equations (2.2)-(2.15) represent four nonlinear coupled equations for the displacements 
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where  
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 is the epicardial surface, and 
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 the time interval during a cardiac cycle. The cardiac cycle is composed from a systole (contraction of the ventricle) and a diastole (relaxation of the ventricle) phases. 

We have supposed that at the endocardial surface 
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 a uniform intraventricular pressure 
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 is applied as an external load. The loads exerted by the papillary muscles and by the pericardium are neglected. The surface 
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 represents the upper end of the annulus fibrosis and is a non-contracting surface with a circumferential fibre orientation. At  
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 is allowed (fig. 1).  The set of equations (2.2)-(2.15) are completely determined if 
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The principal aim of this paper is to determine these functions from experimental data [1,2] by using a genetic algorithm. 

The set of controlling functions are noted by 
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Fig.1   

Representations of surfaces 
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EMBED Equation.3[image: image120.wmf]Ì



EMBED Equation.3[image: image121.wmf]2
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 - the portion where only radial displacement is allowed. A uniform pressure 
[image: image122.wmf]0

p

 is applied on 
[image: image123.wmf]1

S

.

3. A GENETIC ALGORITHM FOR evaluation THE CONTROLLING FUNCTIONS

In the following we consider that the functions 
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 are approximated by polynomials of five degree, characterized by unknowns 
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We extract the coefficients 
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 from the experimental data concerning the strain energy 
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 (Demer and Yin [9]) and first Piola-Kirchhoff stress 
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 (Arts, Veenstra and Reneman [8]). For experimental measuring of 
[image: image131.wmf]W

, a biaxial tissue testing is a valuable method. Biaxial tests generally involve  excision  of  a  thin  rectangular 

slab of tissue parallel to the epicardial surface so that the muscle fibers lie within the plane of the tissue sample and the predominant fiber direction is aligned with one edge of the sample. The tissue is then placed in a biaxial testing apparatus that measures force and displacement (stress and strain) along the orthogonal fiber and cross-fiber axes (Demer and Yin [9]). 

The active stress 
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 is obtainable in experiments as a function of time, sarcomere length and velocity of shortening  of the sarcomere (Arts, Veenstra and  Reneman [8]) An objective function [image: image133.wmf]Á

 must be chosen that measures the agreement between theoretical and experimental data:
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where 
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 at  K points belonging to the volume between the inner and outer wall of the left ventricle. The quantities 
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 at different moments of time, sarcomere length and velocity of shortening of the sarcomere, and 
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 the corresponding experimental values. The controlling parameters 
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 are determined by using a genetic algorithm (GA). GA assures an iteration scheme that guarantees a closer correspondence of predicted and experimental values of 
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at each  iteration. 

We use a binary vector with 42 genes representing the real values of the parameters 
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GA is linked to the problem that is to be solved through the fitness function, which measures how well an individual satisfies the real data. From one generation to the next GA usually decreases the objective function of the best model and the average fitness of the population. The starting population is usually randomly generated. Then, new descendant populations are iteratively created, with the goal of an overall objective function decrease from generation to generation. Each new generation is created from the current one by the main operations:  selection, crossover and reproduction, mutation and fluctuation. By selection two individuals of the current population are randomly selected (parent 1 and parent 2) with a probability that is proportional to their fitness. 

This ensures that individuals with a good fitness have better chance to advance to the next generation. In the crossover and reproduction operation some crossover sites are chosen randomly and two individuals are reproduced by exchanging some genes between parents. In the new produced individuals, a randomly selected gene is changed with a random generated integer number by the mutation operation. In the fluctuation operation we exchange a discretized value of an unknown parameter in a random direction, by extending the search in the neighbourhood of a current solution. 

The fitness function is evaluated for each individual that corresponds to the gene representation. The alternation of generations stops when the convergence is detected. Otherwise, the process stops when a maximum number of generations are reached. The alternation of generations is stopped when convergence is detected. If no convergence the iteration process continues until the specified maximum number of generations is reached

4.Results of the genetic algorithm

We report in this section the results of the genetic algorithm. Fig.2 shows the active material behavior as obtained by GA after 317 iterations. There are shown the time dependence of active stress for sarcomere lengths of 1.7, 1.9, 2.1 and 2.3
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, the length dependence of active stress, and the velocity dependence of active stress. 

Figs 3 and 4 show the dependence of 
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 given by GA after 222 iterations. The distribution of 
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 from the endocardium to the epicardium it is also shown. 

Fig. 5 shows the initial pressure 
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 applied at the endocardial surface 
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S

. The visualization of the displacement field by different values according to the range 0-10 mm is shown in Fig. 6. We can see clearly areas on the ventricle where the displacements are high (for example the area A).

In conclusions, the stress 
[image: image171.wmf]a
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 is correctly predicted by the genetic algorithm, the results being qualitatively and quantitatively consistent with the results obtained by Bovendeerd, Arts, Huyghe, Van Campen and Reneman [10], and Van Campen, Huyghe, Bovendeerd and Arts  [6]. The expression of the ion-core (Born-Mayer) repulsive energy (Delsanto, Provenzano and Uberall [7]) shows good agreement with the experimental data of biaxial experiments (Demer and Yin [9]).

Further experiments are desirable to fully assess the applicability of this theory. Triaxial tissue testing is ideal, but it remains challenging in practice due to technical limitations in simultaneously loading myocardium in three orthogonal directions, ensuring the resulting strains and interpreting their significance. 

By separating the volume change from fiber extension modeled by the repulsive energy function, and shearing distortions modeled by the repulsive range function, the resulting set of response terms should provide an improved foundation for myocardial constitutive modeling.
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Fig.2 

Active material behavior as obtained by the genetic algorithm 

(time dependence of active stress for sarcomere lengths of 1.7, 1.9, 2.1 

and 2.3 
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, length dependence of active stress, 

and velocity dependence of active stress)

[image: image176.png]-60 0 60
O[]




[image: image177.png]60




[image: image178.png]60

he]ix[O]

epi




Fig.3 

Angle dependence of 
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as given by the genetic algorithm. 
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Fig.4 

Angle dependence of 
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Fig. 5 

Initial intraventricular pressure 
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Fig. 6 

Visualization of displacement field by different values according to the range 0-10 mm
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