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Considering soils as non-linear viscoelastic materials subjected to harmonic strain histories this paper presents a dynamic model based on modulus and damping functions in terms of both strain and frequency. Using experimental observations, this general model is then adapted for soils dynamic problem. The numerical calibration of the constitutive dynamic functions is ensure by resonant column data and this apparatus is used and for checked the model validity. 
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1. Introduction

The vibratory ground motions caused by earthquakes, and mainly due to the upward propagation of shear waves from underlying rock formations, consist in cycling loads-unloads-reloads sequences. For this reason, the cyclic stress-strain behaviour of soils appears to be of primary importance for a reliable prediction of the seismic response.

A large volume of investigation concerning dynamic stress-strain characteristics of soils in cyclic conditions has been performed so far [3, 5, 9, 11, 12, 13, 14, 17, 20]. These studies show that there are many factors influencing the dynamic stress-strain response. Among these the main dynamic stress-strain characteristics, definitory for the choice of a dynamic constitutive equation, seem to be the strain dependency and disipative capacity.  

As in the previous statically “variable moduli” models [1, 12, 13, 19] which include the strain dependency by replacing the elastic moduli by strain functions,  Hardin and Drnevich [12], Seed and Idris [20] and many other [11, 12, 13,  20] presented empirical relationships for the strain dependency of the shear modulus and damping ratio in dynamic conditions. 

__________________________
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The dissipative capacity of soil materials has been extensively studied and the proposed models have been built either by accepting the hysteretic nature of the damping or by using the equivalent viscous damping hypothesis [12, 13, 14, 17, 20]. Most of these models using the "backbone curve" concept and the unloading and reloading branches of the hysteretic loops are constructing by accepting the Masing criterion [14].

The purpose of this paper is to present a dynamic non-linear viscoelastic model able to describe the essential characteristics of the dynamic soils behaviour – the strain dependency and damping capacity. Starting from the integral form of the non-linear viscoelastic constitutive equation of relaxation type [2, 5, 18] a dynamic soil model is obtained by a sequence of testing controlled simplifications and completions. The experimental tests, performed both in triaxial and resonant column, have been used not only for qualitative checking of the assumed hypothesis but also for the quantitative evaluations of the material functions contained in the constitutive equations. 

The validity of the dynamic model is evaluated on the basis of comparison between calculated and testing measured dynamic response of one-degree-of-freedom system, using in this purpose the vibrator-specimen system of the resonant column device.

2. Soils as  non-linear  viscoelastic  materials 

We consider the linear viscoelasticity law in the convolution integral form [2, 5, 8, 18]:
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(2.1)

a relationship between the stresses at present time ((t) and the rate 
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 of the strain tensor ( in all past time λ affected by a weighting material function G (the relaxation modulus function).

In the isotropic case the tensorial function 
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 can be decomposed into:
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(2.2)

where G1 and 
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 is the Kroneker's symbol: 
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Dividing the tensors ( and ( into the spherical (
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 the constitutive equation (2.1) can be separated into two parts:
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(2.3)

The first part of eq.(2.4) is a constitutive law that governs the volume changes and the second part is a constitutive law for the shape changes. For this reason, we write: 
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(2.4)

and the octahedral stress and strain invariants: 
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(2.5)

the constitutive equation (2.4) become:
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(2.6)

For a fixed time 
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 must reduce to elastic constants: K - bulk modulus and G - shear modulus and the linear viscoelastic equations (2.7) must reduce to the linear elastic laws 
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 (see the Gurtin & Sternberg's theorem concerning the reduction of the viscoelastic state to an elastic one [10]).

Considering soils as non-linear viscoelastic materials and taking into account the above reduction condition we assume that for a fixed time 
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a viscoelastic state from soils must reduce to a non-linear elastic one and the relaxation function 
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 of a non-linear elastic model for soils. Thus, the kernels from integral form (2.7) must have as arguments not only the time variable t but also the strain invariants ( or (: 
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. In these conditions from (2.7) a non-linear viscoelastic constitutive equation for soils can be write as:
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(2.7)

As can see from eq.(2.7) in both volume and shape governing equations have similar forms. For this reason, in the next, we shall approach the dynamic shape constitutive equation and the first law, for volume changes, can be obtained by formal equivalence.

After that the nonlinear relaxation functions K and G are qualitative and quantitative experimentally evaluated the nonlinear viscoelastic law (2.7) becomes complete. A such evaluation [2], based on triaxial tests, leads to the “separated variables” form:
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(2.8)

where a, b, c, m, n and ( are the experimental material parameters.

3. Dynamic behaviour of the viscoelastic model 

When a non-linear viscoelastic material with the constitutive equation (2.8) is subjected to a strain-history in the form:
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where 
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, (0 are the strain amplitude and ( is the excitation frequency one can obtains the dynamic constitutive equation [3, 4, 5, 8, 18]:
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where G* are the complex modulus function:
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which are so called by analogy with the linear dynamics [8, 18]. By virtue of the same analogy, the real part Gre is the storage modulus function and the imaginary part Gim is the loss modulus functions:
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where 
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By using the (2.13) form of the nonlinear relaxation function 
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where the dependencies in terms of frequency are:
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(3.7)

It is interesting to examine the behaviour of the viscoelastic material with this kind of constitutive equation at very slow or very high frequencies. Because:
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we can conclude that the nonlinear viscoelastic solid with the constitutive equation (3.2) undergoing very slow or fast processes responds in the nonlinear elastic manner. This conclusion is in compliance with previous theoretical and experimental observations [3, 4, 5, 8, 18]. Also, the case ( = 0 corresponds to static loads and then the stresses are computed using the stabilized values of the nonlinear relaxation function. In the case of the large value of the frequencies the relaxation is hobbled and the stresses are computed using the initial values of the nonlinear relaxation function. Both cases are in agreement with the viscoelastic solid behaviour.

As known, the complex modulus functions (3.3) may be alternatively written as:
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where:
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(3.10)

The first function (3.10) 
[image: image43.wmf](

)

w

g

,

0

G

, are called dynamic modulus function and the second functions 
[image: image44.wmf](

)

w

g

d

,

 

tan

0

are called loss tangent function and characterizes the damping properties of the material and phase difference 
[image: image45.wmf]d

 between stresses and strains.

Using the expression (3.6) of the real and imaginary functions 
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 the dynamic function (3.10) becomes:
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with:
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The dependence of dynamic function 
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 in terms of strain amplitude seems as correct. But, the loss tangent ( depends only in terms of frequency ( due to the simplified form of eqs.(2.13) which leads to simplify the term 
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, which reflects a linear damping, is not adequate for soils modelling. Due to the presence and the storage of the irrecoverable strains, the damping in soils is strongly dependent of the strain level (0. For this reason instead of loss tangent functions it is convenient to use for soils damping modelling a new function - the damping function 
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 as an extension in nonlinear domain of the linear damping ratio. By analogy with the analytical form (3.11) of modulus function 
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This assumption will be checked by the experimental data. As can see in a next paragraph, this form is adequate and the damping function (3.12) can be entirely evaluated by using the resonant column test data as well as the dynamic modulus function 
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4. Calibration of the modified viscoelastic model

Until now, in the previous chapters, the non-linear viscoelastic model was build as an extension of the linear viscoelasticity and the concordance model - experiment was checked with the aid of the "statically" triaxial creep tests which can supply the non-linear relaxation function 
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Moreover, although the soils non-linear viscoelastic model (2.8) proved to be useful for obtaining the non-linear complex form of the constitutive equation (3.2) for the correct damping modelling this model must modified by including a new damping function 
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 with experimental determination by dynamic resonant column tests.

For this reason, it may be advisable to directly determine the dynamic functions 
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 from the complex constitutive equation (3.10) by dynamic resonant column tests [3, 4, 5, 9, 14] or in another dynamic device as cyclic triaxial apparatus [13, 14] and torsional shear test [21]. In the following such determination is briefly expose using a Drnevich long-tor resonant column apparatus.

The resonant column apparatus was designed for laboratory determination of the dynamic response of soils by the means of the propagating steady-harmonic shear or compressional waves in a cylindrical soil specimen (column) under resonant frequency conditions. The sample - identical in shape and dimensions to those used in triaxial tests – together with the vibration device are enclosed into a cell chambre where the confining conditions are supplied. 

In the Drnevich type apparatus, the bottom specimen end is fixed and at the top specimen base the vibration excitation device is attached (fixed-free end conditions). The response motion is picked up in terms of acceleration of the specimen-vibrator system.

Because that external load has steady-harmonic forms: 
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From the value of accelerometer output 
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In the above determinations, one has assumed constant amplitude of excitation and a constant cell pressure. By changing these conditions, due to the nonlinear and dissipative behaviour of the real soils, another values of the above mechanical characteristics are obtained. As a result of several sequences of tests with varying loading level, a set of data were obtained for the modulus Gi, damping Di, and strain invariant
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, i = 1,2 ... n loading levels. By statistical processing of these data one can obtain the modulus and damping functions in terms of strain and frequency, 
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As an example, in figs.(4.1) and (4.2) are given the result of such determination using the same clay samples as those used for determination of the nonlinear relaxation function. The tests were performed in Drnevich resonant column apparatus for frecquecies above 1 Hz and for slow frequencies were using the cyclic triaxial tests.

By processing the above resonant column and triaxial data the following analytical expressions was obtained:
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The qualitative aspects of these dynamic functions are given in the following spatial diagrams, (4.3) for modulus function 
[image: image75.wmf](

)

w

g

,

0

G
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Fig.4.3
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Fig.4.4

5. Dynamic functions for seismic loading conditions

The analysis of several resonant column tests shows a major weight of the strain level on modulus and damping values and a minor influence of the frequency values over 1 Hz, the range usually encountered in seismic loading. This fact, which was point aut in the several previous papers [3, 4, 5, 9, 12, 17], may be observed and in the results presented above. Thus, one can see from the dependencies 
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 plotted in normalized form in figs.(5.1) and (5.2) that modulus and damping function are practically independent of frequency for ( > 1 Hz. It is important to note that this hypothesis involve the independence of ( only for these material functions, and not for the dynamic structural response.
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Fig.5.1
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Fig.5.2

Neglecting the dependence of dynamic functions in terms of frequency, the complex modulus function (3.3) become:
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(5.1)

or in the alternative form, similar to eq.(3.10):


[image: image84.wmf](

)

(

)

(

)

0

0

0

*

g

×

+

g

=

g

im

re

G

i

G

i

G


(5.2)

where:
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(5.3)

Thus, the complex modulus function G* can be simplified as:
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(5.4)

and the shear dynamic law becomes:
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which can be regards as an extension in the non-linear domain for the non-viscous type Kelvin model [16].

As can see from eq.(5.5), the real part of the shear law:
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is a relationship between the stress and strain amplitudes and can be regards as the backbone curve equation. Also, the damping function 
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 represents the dissipated energy and a value of this function at amplitude (0 must be related with the hysteretic loop area at this amplitude.

By neglecting the ( variable the dynamic functions for loading with 
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(5.7)

where the subscript n denote the normalized form in terms of the normalized value noted with subscript 0. Also, the dynamic functions from eqs.(4.3) and (4.4) are reduced to the forms:
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(5.8)

and the normalized form of these dynamic functions read as in fig.5.3. In this figure, as in the following figures, the subscript “0” was dropped in the sake of simplicity and ( means the strain amplitude.
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Fig.5.3

6. Validation of the modified viscoelastic model

The validity of the proposed non-linear dynamic model can be assessed through comparison with the results of the resonant column data. 

The resonant column specimen together with the vibration device can be considered as one degree-of-freedom system that is made up of a single mass (the vibration device) supported by a spring and a damper represented by the specimen [6, 7]. But, due to the mechanical properties of the specimen materials both spring and damper has non-linear characteristics and thus entire system is a non-linear one. 

For the torsional vibration case, the differential equation governing this non-linear single degree-of-freedom system can write as [6, 7]:
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where 
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 is the non-linear damping function and 
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Eq.(6.1) is similar with the Voigt model linear equation: 
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where c is the damper viscosity and k is the spring stiffness. Using the same method that describes the nonlinearity by strain dependence of the material parameters, we shall assume that the damper viscosity c and the spring stiffness k are functions in terms of rotation (:
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(6.2)

where J0 is the moment of inertia of the vibrator, (0 is undamped natural pulsation, 
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. As in this case the spring stiffness is a function, we shall define the undamped natural pulsation in terms of initial value of stiffness function 

:
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By using the change of variable 
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from eq.(6.1) one obtains a dimensionless form of the non-linear equation of motion:
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where the superscript accent denotes the time derivative in terms of ( variable, and:
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(6.5)

For a given normalized amplitude ( and relative pulsation (, the non-linear equation (6.5) can be numerically solved and a solution of the form 
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 can be obtained in n points [7, 16]. After that, dropping the transitory part of the solution and chipping only the stationary part result the amplitude of rotation (0:
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The same rotation (0 can be obtained directly form resonant column output:
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where A is the accelerometer value, ra is the distance from the axis of rotation to the accelerometer axis (ra = 0.03175 m for Drnevich resonant column) and ( = 2(f is the pulsation of the vibrator device.

The comparison of the (0 values obtained from both methods, the steady-state solution of the non-linear single degree-of-freedom system and from experimental data can give a pertinent information about the model validity. The results of such testing are given in fig.6.1.
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Fig.6.1

concluding remarks

· The non-linear viscoelasticity can be used as starting point for building a dynamic model for soils because this theory can include the essential characteristics of the dynamic soil response - the strain dependency and damping capacity.

· The "statically" non-linear viscoelastic law for soils in the integral relaxation form having as kernels the material functions in terms of the strain invariants and time was adopted. 

· By integration in the time domain a complex dynamic law can be obtained, based on storage and loss modulus functions in terms of strain and frequency. 

· Between static and dynamic forms of these material function there are relationships given by the Fourier transforms. But, the quantification of these dynamic material functions - the modulus function 
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 - must to be directly performed using dynamic test data (from resonant column, cyclic triaxial or shear test, a.s.o.) 

· For the seismic loading conditions the frequency dependence of the material functions can be neglected and the dynamic modulus and damping function become only strain functions and the dynamic model can be regards as a non-linear hysteretic type Kelvin model, where the modulus function 
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 is connected with the backbone curve: 
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 and a damping value play the same roll as hysteretic loop area.

· The vibrator-specimen system of the resonant column apparatus can be used for checking the correctness of the material specimen modelling. Numerical solving of this one-degree-of-freedom non-linear system and the comparison with testing data can give a pertinent information about the validity of this model, as well as of any kind of dynamic model.
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