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Abstract. We present a framework for measuring, based on chaotic processes, which extends the current measuring theory and practice from typically linear and static systems to nonlinear dynamic measurements. Besides a high sensitivity, sensors based on chaotic dynamics demonstrate, in a single process, high sensitivity, frequency selectivity and multi-sensing capabilities, as well as data-fusing and pattern recognition capabilities. We speculate that some natural sensing processes is based on processes similar to those in the proposed sensors. This study challenges the use of stable systems in measurements and provides a possible explanation for the high sensitivity of biological structures. Small-scale nonlinear devices can be conceived to perform as nonlinear dynamic sensors and to implement sensorial functions, including sensing, data fusing, and pattern identification.

1. Introduction 

Traditionally, measuring is a process based on fundamentally static linear system, or on systems and sensors that can be linearized. This approach has advantages related to the ease of building the measuring system, but hardly resembles the biological sensing processes; moreover, system simplicity comes with limits related to sensitivity and information processing. All recent experimental findings demonstrate that neuronal activity, including sensing, involve complex dynamics [1], [2], [3], [4], [5]. Newly, it has been demonstrated that “amplification” and instability can occur in artificial neural networks with nonlinear dynamics [6]. 

A method for measurement and sensing has been established, based on chaotic processes [7], [8], [9], [10], [11]. It also can provide an explanation for the high sensitivity and selectivity that can be achieved by the chaotic sensing systems, similarly to the high sensitivity of natural sensing systems. The proposed transducing method and transducing systems are highly sensitive and have capabilities of multi-sensing, window sensing, data fusing and pattern identification in the sensed input space. This sensing procedure has strong resemblance to biologic sensing processes. Therefore, the nonlinear dynamical sensing systems are closer to biological sensing systems, which perform both basic sensing and information processing. The concept of the dynamical sensing served to the development of a family of nonlinear sensors [9], [10], [11], [12].

In this review paper, we summarize some of our recent results in the new fields of: 

i) nonlinear dynamic measurement theory and systems; 

ii) artificial / transducing ganglions  (a-/t-ganglions) and sensing artificial neuronal structures;

iii) models for biological sensing processes using the above.

2. Chaotic Measuring principles

We start with a few introductory concepts (after [7-11]) which are needed in explaining the chaotic measuring principles. 

A bifurcation diagram is a plot summarizing the dynamic behavior of a system with respect to one of its parameter. The plot is obtained by drawing a significantly large number of output values (x axis) for each value of the system parameter (y axis). The bifurcation diagrams for parametric chaotic systems evidence various qualitatively different regimes (Fig. 1). When the regime changes, the change can be a dramatic one, with a fast, important change of the attractor shape, possibly a (theoretical) discontinuous jump from one attractor to another; alternatively, a slow, continuous deformation of the attractor can take place. The discontinuous jump cannot actually take place in real systems, because of the noise [3], [13], [14]. Therefore, there are two main types of changes of the attractors with respect to the change in parameters: very fast (“jumps”), and slow. On the bifurcation diagram shown in Fig. 1, the regions indicated by thin arrows represent regions where fast regime transitions occur.

Assume that the sensed parameter represents one of the chaotic system parameters. If the operating point of the system is near a sharp transition in the bifurcation diagram, any small change of the sensed parameter value will generate a fast change in the regime. It is thus possible to determine the value of the parameter change, with a high sensitivity, far higher than that of a typical linear measuring system, in a narrow region of the parameter space. Such a measurement system will not work for a large range in the parameter space, but it is probable that if we need a very high sensitivity, it is for closely monitoring the parameter in a narrow range.

[image: image17.bmp]
Fig. 1. Regions of high and low sensitivity on a bifurcation diagram. Arrows show some of the regions of high sensitivity.

To perform a measurement based on chaotic regimes, we need a nonlinear dynamic system that shows a sharp transition of the dynamic regime in the region of interest of the parameter to be measured. The second key element in the measuring system is the system used to characterize the dynamic regime and to convert this characterization in the output measuring value. 

Subsequently, we discuss the principles and examples of hardware implementations of chaotic sensors [7-12]. The sensors operate in a chaotic dynamic regime with significantly changing attractors. Namely, we assume that the attractor is swinging from a chaotic regime to another chaotic regime or to a periodic one when the parameter varies [7-12, 15]. The basic block diagram of the nonlinear sensor is presented in Fig. 2. The sensor may include one or more sensing elements (SE) embedded in the nonlinear system or connected to it. The sensor includes the nonlinear dynamic system (NDS) and the behavior characterization block, BCB, used to extract information from the signal generated by NDS, by characterization of the nonlinear dynamics regime. 
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Fig. 2. Block diagram of the dynamical measuring system (after [7, 8 ].)

Any change in the measured parameter will produce a variation in the value of the corresponding system parameter(s), and finally will produce a change of the dynamic operating regime of the nonlinear dynamic system (see Fig. 3). Instead of measuring instantaneous, quasi-stationary values, or states of the system, as for traditional measurement systems, the variation of the operating regime of the nonlinear dynamic system is measured or assessed (in the case of pattern identification), in case of chaotic measuring systems. Either the nonlinear dynamic system as a whole, or the discrete sensing elements connected (inside it or to it) and in conjunction with the nonlinear dynamic system detect the changes of the measured parameter. Moreover, this variation is transformed into a change of the attractor of the nonlinear dynamic system.
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The nonlinear dynamic system may include any feedback loop(s) configuration that allows the development of a nonlinear dynamic operating regime depending on the sensed parameters. The nonmonotonic nonlinearity of the system can be of any type, if it allows a chaotic regime. The behavior characterization block computes the output signal samples as a function of the chaotic signal. The BCB can be implemented in various ways, according to the measured global parameters [7-12]. 

High local sensitivity is a general characteristic of the chaotic systems. The differences occurring between different systems refer to the sensitivity value, to the measured (sensitive) feature of the attractor, and to the degree of insensitivity to undesired parameters. Because it is easy to accommodate several sensing elements, connected or embedded in a chaotic system, multi-sensing is easy to implement with such systems. 

3. The A-/t-ganglion concept

The concepts of “artificial ganglion” (a-ganglion) and “transducing-ganglion”, or “t-ganglion”, has been introduced by the first author [9], [10]. An a/t-ganglion structure is viewed as a basic unit of neural networks – the next unit in complexity after the neuron. A t-ganglion is a set of neurons working together and performing, as whole, functions that are not performed by individual neurons. The dynamics of a ganglion may differ significantly from the dynamics of individual neurons inside it. Actually, the key of the operation of some of the sensors we have developed is the "a-/t-ganglion" concept, which expands the classic artificial neural network concept to a new functional unit, the ganglion. A ganglion has its own dynamics and functions. 

Because of the existing overwhelming evidence that natural neurons are not all alike, the hypothesis that all neurons are identical processing elements in an artificial neural network has been given up in dealing with artificial ganglions [9, 10]. Based on their operation, the main functions of the neurons in an a-/t-ganglion are [10]:

· data aggregation (data processing); the main function of neurons;

· data diffusing: sending data to a set of neurons, through channels of different “strengths”;

· inhibiting: blocking the operation of controlled neurons; opposed to the diffusion;

· strengthening; increasing the effect of specific stimuli; generally the strengthening is performed by a local feedback through the strengthening neuron;

· distant correlation (correlating the operation of two or more neurons laying far apart, separated by one or more “layers”);

· transducing (sensing).

We have proposed the following types of neurons to build an artificial /transducing ganglion [10]:

· Working neurons (w-neurons); these are neurons basically aggregating data, moreover carrying data from a point to another and performing either data-transport and amplification, or other basic function.

· Inhibiting neurons (i-neurons); they inhibit other neurons.

· Transducing (sensing) neurons, or t-neurons, like rods and cones in the retina.

· Cross-neurons (c-neurons); these are neurons that play the part of transmitting data from one neuron to another “on the same layer”. Actually, the two neurons connected by a c-neuron are not necessarily placed on layers, (geometrically speaking – on planes), but they are performing a same function in a network).

· Feedback neurons (f-neurons); they backward convey signals from one layer to a previous one.

· Jump neurons (j-neurons); they convey signals at least two layers in advance, or behind.

The software (or hardware) implementations of these types of neurons are distinct for each type. For instance, the hardware implementation of a w-neuron may be a logarithmic amplifier, or a nonlinear oscillator (depending on the application), while an f-neuron, a c-neuron or a j-neuron may be implemented by a summer. Also depending on the application, the hardware implementation of a t-neuron may be a basic sensor, like a photo-transistor, or may represent an oscillator with a sensor included in its circuit to modify the oscillating frequency in response to the measured parameter.

A specific artificial ganglion may include two or several types of the above neurons. According to the above definitions, it is clear that not only the input-output function, but the interconnecting topology of a specific neuron determines its type. Because of the multiple feedback paths in a ganglion, this structure typically exhibits a specific dynamics. 

A simple example of t-ganglion topology is shown in Fig. 4 a. In this figure, oN denotes a basic oscillating neuron, while  stand for aggregating-and-feedback neurons. In some respect, the structure of this ganglion may be paralleled with the structure of a multivibrator (astable multi-vibrating) circuit: both involve two identical sections and they have the same feedback topology (see Fig. 4 b).




Fig. 4. A simple configuration of t-ganglion. (After [9])
Finally, in a t-ganglion, the qualitative states of the neurons are considered more important than the actual output signal. This is in relation to the characterization by the dynamic state of the t-ganglion of the input to it (the sensed parameter).

4. Hardware implementations of the t-ganglion concept and of the dynamic measuring principles

To put in hardware the principles above described, we need circuits standing for the t-ganglion and circuits to characterize the dynamic state of the ganglion, yielding an output signals directly dependent on the measured parameters. Moreover, if the t-ganglion has to perform the function of feature extraction or pattern recognition, the dynamics characterization block has to extract the relevant information from the ganglion.

The sensing system may include several dynamic cells, possibly several cells exhibiting synchronism under certain conditions. An example of implementation of the nonlinear dynamic system is based on a small network of modified Wien oscillators [9]. Global feedback loops from the summed output of the oscillators to the input of the oscillators are used. The oscillators form an elementary network of “oscillating-cells” with internal sensing capabilities, while the network as a whole adds to the sensitivity through global feedback parameters. Such circuits may represent a suitable elementary model for small natural neural networks (NNNs), e.g., a small natural ganglion.

Using several coupled nonlinear Wien oscillators, the oscillators including each one or several sensors connected to them, the dynamic regime was demonstrated to significantly change for variations of the sensor value of the order of only 1%. We have tested with excellent results several hardware implementations of similar dynamic t-ganglions, with several types of sensing elements, in various combinations, including resistive temperature sensors (thermistors), inductive (magnetic) sensors; resistive strain gauges; capacitive humidity sensors, piezoelectric sensors, and photoelectric sensors [9], [10], [11].

Unlike the usual methods of attractor characterization, based on various fractal dimensions, we use simple geometrical measures because the computation of fractal dimensions is too time-consuming; moreover, the hardware implementation of such measures is difficult. The attractor is conveniently characterized by purely geometric parameters of the curve representing it in the phase diagram. Geometric parameters of the curve representing the attractor are shape coefficients related to the attractor. Shape coefficients can be global, i.e. referring to the overall “image” of the attractor, or local, referring to a specific part of the geometrical object (for instance, the maximum curvature etc.) We have used shape coefficients that are easy to compute and implement in hardware [9], [10]. Such shape-dependent coefficients change when the nonlinearity parameter is changing, and may reveal sharp changes of the attractor shape. Examples of geometric parameters are the “average diameter”, the “horizontal diameter”, the “vertical diameter”, the “average slope” of the attractor, the “time-of-flight” in a certain region of the phase space, or simply the average value of the signal. Other convenient shape parameters are related to the tangent to the attractor curve.

We subsequently present the shape parameter definitions for the case of discretized signals. Notice that the hardware implementation of the circuits computing these parameters requires analog multipliers, integrators (for averaging), rectifiers, and adders. All these circuits are easily available. Also notice that the software computation of these parameters is much less time consuming than the computation of the classic fractal dimensions. 

We denote by xi, i = 1,.., N, the samples of output signal of the nonlinear system; y denotes the sec​ond parameter used to build the phase dia​gram (or a similar diagram). For the phase diagram, yi denote the second variable samples. Some of the parameters we proposed and used to characterize the attractors are classical: 


[image: image4.wmf](

)

å

=

×

=

l

N

i

i

x

N

1

2

1

1

;

[image: image5.wmf](

)

(

)

å

=

-

×

=

l

N

i

i

x

x

x

N

1

min

2

1

 and


[image: image6.wmf](

)

(

)

å

=

-

×

=

l

N

i

i

y

y

y

N

1

min

2

1

,


where 
[image: image7.wmf](

)

N

i

i

x

x

,..,

1

min

min

=

=

; 
[image: image8.wmf](

)

N

i

i

y

y

,..,

1

min

min

=

=

;


[image: image9.wmf](

)

(

)

(

)

(

)

å

=

-

+

-

×

=

l

N

i

i

i

y

y

x

x

N

1

2

2

3

1




where 
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 represent the average values. Other parameters are briefly explained below. The average ratio of the increment on the verti​cal axis to the increment on the horizontal axis, 
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has the geometrical meaning of average slope of the curve.

The average squared length of the seg​ments in the phase diagram is: 
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A “diagonalization” coef​ficient is computed as
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The curvature and the torsion of the attractor are also good choices to characterize the attractor, but they are more difficult to implement. 

The choice of the parameters used to characterize the global behavior of the dynamic system matters. Some parameters may exhibit low sensitivity to specific changes of the attractor, but they may be highly sensitive to other changes. This is exemplified in Fig. 5, where two shape parameters show a similar behavior, with only one sharp transition, while the third is more sensitive, with multiple sharp transitions. 

We exemplify in Fig. 5 how the “measuring” of the attractor can achieve an output that is highly sensitive to the parameters – including “external” parameters. Here, the output value (vertical axis) corresponds to values of the geometric features of the attractor value. The change of the value of the sensed parameter causes the nonlinear regime to go through various regions of the bifurcation diagram, implementing a characteristic with several windows of sensing. Notice that the high sensitivity is achieved in narrow regions of the parameter space (in the frames). The sensitivity we determined by simulations and on electronic circuits can reach 104 [relative output change]/[relative input change]. Moreover, the graph shows a high selectivity in several operating regions, allowing the development of a multiple-window type sensor and the recognition of the patterns in the input space.

[image: image14.png]Vertical axis: geometric feature
value. Relative units

Thee attractor
oefficients having
different behavirs

ensing windows

™ Highest sensitivity to
the value of the
parameter (Best
operation tegion)

Horizontal axis: parameter vatue (relative units)




Fig. 5. Results on a chaotic circuit (based on Yamakawa’s  ”Chaos generator” integrated circuit [16], [17]). After [12].

5. An example

The brief example presented here is after [12]. A classical measuring problem is to detect a specific frequency, for example to detect that a signal attained a specified frequency. The analogue circuitry typically used to solve the frequency detection includes a high Q, narrow band filter tuned on the respective frequency and a signal comparator. For low frequencies, it is not easy to obtain a good filter. Here, we present a solution based on chaotic circuits. The circuit used is a modified version of that described in [18] and has a tent-map type nonlinear characteristic. By adding only a capacitance in the feedback loop of an operation amplifier of the circuit, we modified the frequency characteristic of the circuit and made the attractor strongly frequency dependent. The regime characterization block simply performs an averaging of the half-rectified chaotic output signal. The resulted variation of the output voltage with respect to the frequency of the input signal is shown in Fig. 6.

The equivalent “quality factor” of the system based on the chaotic generator is Q ( 9.62/(9.63-9.6) ( 300. This provides a similar or higher selectivity than that obtained by classic LC-AO circuits (generally, such circuits have Q < 100, especially at low frequencies, below 100 kHz.) More details on the operation and on the related electronic circuits used in this example are presented in [12].
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 Fig. 6. Experimental frequency discrimination characteristic. Here, the input frequency is the frequency of the clock circuit. (After [12])

6. Chaos and sensing in biological structures

The measuring principles presented above may have a direct relationship to biological sensing processes. Until now, researches mostly concentrated on multi-cell architecture to explain natural processes and focused on the possibility of chaos generation in biological structures and to related pattern recognition and memory processes. Less attention was paid to the implications of such processes on sensitivity. Sensing in living organisms originates at cell- and network-level, then it propagates, through processing levels, and eventually it becomes high-level sensation after processes at the level of the central nervous system. Yet, the complex architecture of a multi-cell network does not guarantee, by itself, high sensitivity and selectivity. We need at least one more mechanism to explain the high sensitivity of NNNs structures. Examining processes that underlie the sensing process at the cell- and sensorial neural networks level demonstrated that basic sensing relies on changes of dynamics, due to a change of external factors inducing a change of the internal operation of the cell. 

The mechanism of sensing based on changes of the dynamic behavior is a potential candidate to explain the high sensitivity in biological structures. We conjecture that it is the dynamic operation (behavior) that is the basis of the high sensitivity and of data fusing in biological structures like sensing neural networks, which operate based on “fast changing” dynamic regime. The following mechanisms may occur in sensing in natural systems: 

(i) External parameters modify the dynamic behavior in the “fast changes” mode. 

(ii) Networks of sensing cells include non-sensing cells to enhance the sensitivity of the dynamic regime to the external parameters, while increasing the stability of the behavior to unrelated factors. 

(iii) The various dynamic behaviors of the sensing networks are translated by higher-level networks into global parameters, which characterize the dynamics, while providing an indication of its change. 

There is strong evidence to support this conjecture. Several researchers have reported on the chaotic behavior of natural neural networks (NNNs) and on the mechanism of information processing and excitability, as related to chaotic processes [1-6], [19], [20]. Specifically, it has been demonstrated that the temporal variability in firing neurons is related to the excitatory and inhibitory inputs and that the dynamical behavior in the neuronal structures is dependent on sensory inputs and related to the complexity of the NNN structure. These researchers also noticed a very sharp sensitivity of these structures in specific circumstances and a rich spectrum of behaviors, in different regions of the parameter space and changes in the mechanisms of rhythmogenesis under stimuli.

The above stated hypotheses may help explaining the high local sensitivity, frequency dependence and selectivity of natural sensing NNNs [12], [15]. We believe sensorial NNNs enhance the sensitivity compared to single cells, by making the structure dynamics more sensitive and better “tuned” to stimuli, while stabilizing the dynamic behavior to other parameters. Based on the idea that a cell dynamics is the very core of sensing representation, and that the cell dynamics is a nonlinear process, we may be able to mimic the natural sensing. It is known that natural sensations (e.g., tactile sensation) are strongly frequency-dependent. How can a set of neurons produce a frequency-dependent answer is not yet clarified. In the model we proposed, the mechanism is based on the chaotic sensitivity to frequency. 

Further discussion and examples of using the dynamic (chaotic) measuring concepts, a-/t-ganglia  and chaotic measuring systems can be found in [21-24].

7. Conclusions

The sensing chaotic systems demonstrated capabilities like hypersensitivity, selectivity, data fusing, and pattern selection capabilities. The high sensitivity relates to the input (sensed) parameters with respect to classic measurement systems, moreover to very high sensitivity in specific ranges of the sensed parameters. The hypersensitivity feature is specific to the chaotic regime, as well as to a certain way of characterizing and measuring the chaotic regime. Astonishing, the selectivity is directly related to the hypersensitivity in nonlinear systems. Namely, selectivity indicates a very high sensitivity in narrow ranges of the sensed parameters, thus allowing the sensor to selectively “see” – and adapt – to these regions. These sensors are suitable for integration into microsystems and have unique features. Synchronization detection in networks of systems is also a good indicator for the change of the global behavior and can be used to detect patterns in the sensed parameter space. Data fusion and pattern identification are operations easy to perform by chaotic systems and are naturally implemented in the sensing systems described.

The extension of the same principle leads to a fundamentally new class of transducers and to a large family of new measuring devices and systems with remarkable capabilities. This and previous works suggest that the principle of measurement based on chaos and related systems could successfully compete with other established measuring procedures and systems.

Much remains to be done at the technological level, including methods to design the nonlinearity to obtain a specified dynamic behavior and methods to insure a low sensitivity of the sensing systems to external conditions, as temperature and power supply. No methods exist to design the chaotic systems that have a sharp transition in the region of interest of the multi-dimensional space. However, the perspectives and potential capabilities of the sensing systems based on chaos probably deserve development efforts.
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Figure 3. Examples of changes of the attractor shape when a parameter value changes in a set of interconnecting neurons (an artificial ganglion).
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