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We consider some systems of general vector equilibrium problems and weighted equilibrium
problems and find equivalence conditions between them. Then we establish for these classes of
problems a few existence results under different types of generalized weighted monotonicity
assumptions.
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1. INTRODUCTION

The scalar equilibrium problem was first introduced and studied on real Hilbert spaces [10], and then
on Hausdorff topological spaces [5]. Then, in [2] there were considered two classes of vector equilibrium
problems, on a closed convex set of a Hausdorff space, and on a closed pointed convex cone. Also, the same
authors introduced the set-valued equilibrium problem. In [8] is introduced and investigated a quasi-
equilibrium problem on a Hilbert space. The invex equilibrium (or equilibrium - like) problem is defined on
an invex subset of aHilbert spacein[9].

In [11], the genera equilibrium problems on a real Banach space and then on the dual space is
considered. The existence of solutionsin set-valued cases was obtained [3] on reflexive and then on arbitrary
Banach spaces, and aso on their duals.

2. SOME PRELIMINARIES

For each given me [l , wedenoteby R, ™ the nonnegative orthant of R™, i.e,
R,™ ={u = (u,..,u,)eR"|u; 20, for j=1,...,m}
and
intR,"™ ={u = (u,..,u,;) eR"|u; 20, for j=1,...,m}
itsrelative interior. Also, let

T ={U = (U U, )R DT U =1)

beasimplex of R,™ and
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intT™={u = (U,...,u)eintR"| Z’j“:luj =1}
itsrelative interior.
Let | ={1,...,n} beafiniteindex set and for eachi € | let |. be a positive integer. For each i € | , let
X, be areal topological vector space (not necessarily Hausdorff), K, anonempty convex subset of X;, and
Y, an arbitrary set.
We denote X =X, K=]]K; and x=(x)._, - Also, we denote by #(K)the family of all

iel iel
nonempty finite subsets of K and by COA the convex hull of theset A
Foreachiel  let f:K Y and ¥, Y xK xK —R" twomapsand ¥ = (), . We consider
the systems of vector equilibrium problems
(¥ —SVEP): Find xe K suchthat, foreachiel,

¥ (f.(x),x;y)eR"\{Gforaly eK;

and (‘I’—SVEP)W: Find X e K such that, foreach i € |
¥, (f (), x;y,)gintl " foraly, eK,.
Relative to problems (¥ —SVEP) and (¥ —SVEP),, we introduce the weighted general equilibrium
problem over product sets (¥ —WEPP): Find xeK with respect to the weight vector

W=W,..W)e f[(R) \{0}) such that

i=1

%“Wi-\Pi(fi(x),xi;yi)SOforanyi ek, iel;

and the system (¥ — SWEP): Find X e K with respect to the weight vector W = (Wl,...,Wn) such that, for
eachiecl W eR"\{0}and
W, -, (fi (?),i;yi)so foraly eK,.
We denote by K" (respectively K ") the solution set of (¥ —WEPP) (respectively, (¥ — SWEP)) and
by K.’ (respectively, K ) the normalized solution set of (‘¥ —WEPP) (respectively, (‘¥ —SWEP)).
The following lemma shows that the solution sets of (¥ —WEPP) and (Y — SWEP) coincide.
Lemma 2.1. Let W = (W,,...,W.) Eﬁ(R+li \{O}) (respectively, W =(W,,...,\.) eﬁT+" ) be a

i=1 i=1

weight vector. Suppose that P ( f (X),Xi;X): O foranyiel and xe K, . Then K" = K (respectively,
KY = KY).
The next result showsthat (¥ —SVEP) or (¥ —SVEP),, can be solved using (¥ —SWEP).

— n n
L emma 2.2. Each normalized solution x e K with vector W e [ T," (respectively W e [ [intT.")
i=1 i=1
of (¥ —SWEP) isa solution of (¥ —SVEP) (respectively, (¥ —SVEP)).
Remark 2.1. This type of equivalence results were obtained for different classes of equilibrium

problems or variational inequalities by M. A. Noor (see, for example [9] and some of the references therein).
From Lemmas 2.1 and 2.2, the next result follows.
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J— n
Lemma 2.3. Each normalized solution xe K with weight vector WeHTJ' (respectively
i=1

W e[ ]intT.") of (¥ —WEPP) isa solution of (W —SVEP)_ (respectively, (¥ —SVEP)).

i=1

3. EXISTENCE RESULTS

In this section we consider three classes of generalized weighted monotone mappings . Then we
establish some existence results for a solution of ('Y —WEPP).

Definition 3.1. Afamily ( f;).  of functionsis said to be:
(i) weighted monotone wrt (W, W) if for all X,y € K we have

DWW (i (y)oxi v ) = (1 (X). %% )) <0

iel

and weighted strictly monotonewrt (W, V) if the inequality is strict for all X # y ;
(i) weighted pseudomonotone wrt (W‘P) if for all X,y e K wehave

W (09, % M))<0:>ZW (¥ (f(v).%:y))<0

iel

and weighted strictly pseudomonotone wrt (W, ') if the second inequality is strict for all
X£Y:
(i) weighted maximal pseudomonotonewrt (W, W) if it is weighted pseudomonotone wrt
(W,¥) andfor all x,yeK wehave

SW-(¥(1(2),%: %)) <0vze (x Yl = YW (W, (£,(%),%; ;) <0 1)

iel iel

where (X, y]=H()§,yi], and weighted maximal strictly pseudomonotone wrt (W, V) if it is weighted
iel

strictly pseudomonotone wrt (W, %) and (3.1) holds

Definition 3.2. A family (f;) _ of functionsis said to be weighted hemicontinuous wrt (W, V') if
for all x,ye K and 2 €[0,1] themapping A > W - ¥, ( fi (x+2(y=X)),%: ) is continuous.
iel
Proposition 3.1. We suppose that the family ( f )iel of functions satisfies the following conditions:
i) it is weighted hemicontinuous and weighted pseudomonotone wrt (W, ‘P) ;

i) forany i | and 1€[0,1],

W (i (x4 2(y=%)) 5% + A0 = %)) = A, (i (x+ A(y=%)), %3 ¥ ).
where 7 >0 isafixed real constant.
Then it is weighted maximal pseudomonotone wrt (W, V).

Theorem 3.1. Assume that
(i,) thefamily (f;)._ isweighted maximal pseudomonotonewrt (W, ¥) ;

el
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(i,) there exists a nonempty closed and compact subset D of K and §/e D such that, for

alxeK\D,
(7 (10 x:)) <0

(i5) the mapping y—>ZV\/i-( 1 i(x),)g;yi))is convex onK ;

iel

(i) D W - ( (L (%)% )g)):OforaIIXGK;

iel

(i5) for any Ae T(K) and X,y € COA, and every net {x“ }aer in K converging to x, we have

I|m|nf2‘{' ( ( “),)g“;yi)zgllﬂ(fi(x),x;m).

ael’
Then there exists a solution xe K of (WY —WEPP), hence of (Y —SWEP). Furthermore, if
wW eHT+" , then there exists a normalized solution xe K of (¥ —WEPP), hence of (¥ —SVEP)_. Also,

n
if We ] [intT," then xe K isasolution of (W —SVEP).
i=1
Remark 3.1. Inthe proof of Theorem 3.1, Theorem 2.2 from [6] is used.
From Theorem 3.1.we obtain
Theorem 3.2. Assume that

(},) thefamily (). isweighted maximal strictly pseudomonotonewrt (W, ¥);
(],) there exists a nonempty closed and compact subset D of K and §/e D such that, for

alxe K\D,
(2, (10 x:)) >0

iel

(is) ZV\4~(‘I’i(fi(x),x;yi)w{’i(fi(x),yi;x)):oforaJI X,yekK.

iel

Then there exists an unique solution of (Y —WEPP), hence it is the unique solution of (Y — SWEP).

Moreover, if W e 1_[T+Ii then there exists an unique normalized solution X e K of (¥ —WEPP) which is

i=1

n
also the unique solution of (W-SVEP) . For We[]intT,", xeK is the unique solution of

(Y —SVEP).

Remark 3.2. For the case of variational inequalities, see[1].

Definition 3.1. We say that f isweighted B-pseudomonotone wrt (W, V) if for each X € K and
o in K convergingto x with limsup) ¥, ( f (x“),x“;x)zo,wehave

ael iel

Iimpr‘Pi(fi(x”),x‘”;yi) Z‘P( ).%:y,) forall yeK.

ael iel

every net {x“ }

a

Theorem 3.3. Assume that
(k) the family (f)  is Weighted B-pseudomonotone wrt (W,¥) such that, for each

Ae(K),themapping x — > W(f,(x).x;y,) islower semicontinuouson coA;

iel
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(k,) there exists a nonempty closed compact subset D of K and y € D such that
D W (f(x),%;:%;)<0 for all xe K\D;
iel

(k) D Wi(fi(x)x:%)=0,forall xeK.

iel

Then there exists a solution xe K of (WY —-WEPP), hence a solution of (¥ —SWEP).

Furthermore, if W € HT+" then there exists a normalized solution x e K of (Y —WEPP) whichisalso a

i=1

solution of (\P—SVEP)W, and for WeHintTJ' , Xe K isasolution of (\¥ —SVEP).

i=1
Remark 3.3. In order to prove the above result, we used afixed point theorem from [7].
Remark 3.4. The case of relatively B-pseudomonotonicity is studied in [4].
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