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THE GENERALIZED SOLUTION OF THE BOUNDARY-VALUE PROBLEMS 
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The complete system of equations which describes the bending of the elastic rods on elastic 

foundation, using the properties of the convolution algebra D , is determined. The obtained 

equations contain the given and constrained loads as well as the boundary conditions of the problem. 
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1. INTRODUCTION 

In solving the problem of the bending of the elastic rod on elastic foundation we come across 
difficulties owing to the following factors: 

1. The rod is loaded with discontinuous loads; 
2. The action of some concentrated loads and moments; 
3. Discontinuities of the mechanical properties of the rod and of the elastic foundation. 
As a result the classical mathematical analysis (with the classical definition of a derivative) can be 

applied only on the rod parts where the loads and the mechanical properties of the rod and foundation do not 
have discontinuities. 

The classical method of solving the problems in which appear discontinuities is the partition of the rod 
into segments (which have distinct mechanical and geometrical properties). We obtain a system of boundary 
(the ends of the segments rod) value problems so that the solution of the problem on each rod segment is 
continuous. To solve the problem with discontinuities we must take into account the continuity conditions at 
the interface of the rod segments. 

This method was used in [4] to obtain the displacement solution for steady-state longitudinal vibrations 
of an inhomogeneous elastic rod having n  homogeneous elastic segments. 

The general and unitary method to deal with the problems concerning external discontinuities (e.g. 
discontinuous loading) and internal discontinuities (e.g. owning to the mechanical properties) is the 
distribution theory. 

In the framework of this theory we obtain a single equation which contains the boundary, initial and 
jump conditions. 

The distribution theory was used for analyzing beams with internal and external discontinuities, [8], 
[9], [11], [12]. 

A bending problem with discontinuities in which the distribution theory is not systematically applied, 
being a combination between classical mathematical analysis and the distribution theory, is studied in [12]. 

The use of the distribution theory and of the convolution algebra ( )D D  � , is more efficient, 

because the unit element is the Dirac distribution ( )x D   and on the other hand this algebra is without 

divisors of zero. 
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With the help of the fundamental solution in D  of the operator which describes the bending of the 

elastic rods on elastic foundation, the general expression of deflection v  in the distribution space  D  is 

given for any kind of rod loading. 
From the condition that the deflection  should have the support in [ , , there are obtained four 

equations. These equations ensure the determination of all unknowns which appear such as: constraint 
concentrated loads and moments due to the fixing of the rod, the deflection jumps and their derivatives at the 
rod ends. 

v ]a b

2. THE SYSTEM OF GENERALIZED EQUATIONS OF THE ELASTIC RODS BENDING ON 
ELASTIC FOUNDATION 

 Let us consider a straight homogeneous elastic rod of finite length, [ , ]x a b , and with constant 

section (Fig. 1.1), where Ox  represents the rod axis. We shall denote by  ( ),v x
[ , ]

( ), ( ), ( ),q x T x M x
x a b  the deflection 
(displacement), the intensity of 
the distributed load, shearing 
force and bending moment, 
respectively. 

We denote by ,
d

dx


x   

x

d

dx
   the derivative in 

classic sense and the derivative 

in distribution sense, respec-

tively. Then [6] the equations 

system of bending of elastic rods is 

Fig. 1.1. Elastic rod on elastic foundation 

1
2

1 1
1

( ) ( ) 0, ( ) ( ), ( ) ( ), ( , ) [ , ], , ,
n

x x x i i
i

T x q x T x M x M x EI v x x c c a b c a c b





               n (2.1)

where EI  represents the bending stiffness. 
 At the points c a  can act given or constraint concentrated loads i.e. 

concentrated forces  and moments 

1 2 3, , , ..., ,nc c c b 

iP , 1,im i n  (Fig. 1.1), so that 

               1 4 0 1 2( ) , , , , ,v x C a b C J q x C J T x C J M x C J   

b

 (2.2)

where .  
1

1 1
1

, , ,
n

i i n
i

J c c c a c





 
The rod is acted upon by external loads, being thus deformed, and lies on an elastic foundation, 

interacting with it. The foundation acts over the rod with reactions distributed all over its length, by opposing 
to it. The simplest model for an elastic rod on elastic foundation is the Winkler one [3]. For a Winkler model, 

it is assumed that the reaction of the elastic foundation    , ,eq x x a b  exerted on the rod is proportional to 

the deflection of it at that point and is independent of the deflection of other parts of the foundation hence 

     , ,eq x kv x x a b   ,  (2.3)
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where  is called the rigidity coefficient of the elastic foundation. k
 The reaction of the elastic foundation must be considered as an additional load with respect to the 
given ones, working normal on the rod axis. 
 Consequently, taking into account (2.1) the equations system of the bending of elastic rods on elastic 
foundation is 

  2( ) ( ) ( ) 0, ( ) ( ), ( ) ( ),x xT x q x kv x T x M x M x EI v x         
x
 (2.4)

where 
1

1 1
1
( , ) [ , ], ,

n

i i n
i

x c c a b c a c b





    . 

 To rewrite the system (2.4) in the distribution space ( )D   the functions  will be 

analytically prolonged with null values out of the interval 

, , , ,v q T M

 ,a b  and we shall denote them by 

 respectively. , , , , ,v q T M x   �
 Thus we have 

 
 

 
 

 
 

 
 

( ), , ( ), ,
( ) , ( )

0, , 0, ,

( ), , ( ), ,
( ) , ( ) ,

0, , 0, ,

v x x a b q x x a b
v x q x

x a b x a b

T x x a b M x x a b
T x M x

x a b x a b

        
        

 

 

 (2.5)

and the equations (2.4) becomes 

 2
1 2 3( ) ( ) ( ) 0, ( ) ( ), ( ) ( ), , , ,..., .x x xT x q x kv x T x M x M x EI v x x c c c c                  � n  (2.6)

 We mention that the shearing force  at the point ( ),T x  ,x a b
]

 of the rod represents the resultant of 

all given and constraint normal forces from the interval ( ,x b . 

 Analogously, the bending moment ( ),M x  at the point  , ,x a b  represents the sum of the given and 

constraint moments from the interval ( , ]x b  with respect to x . 

 The moment of a force with respect to the points x  as well as a concentrated moment are considered 
positive if they determine a clockwise rotation. 
 The concentrated and the distributed loads are considered positive if they act in the sense of the  
axis. 

Ov

 We shall denote by ( )D �  the distribution (continuous linear functional) defined on the test functions 

space , which are indefinite derivable functions with compact support. ( )D �

 We denote by  the distributions from ( )D D  � ( )D �  having the supports on [0 . We mention 

that the distributions from  represent a convolution algebra without divisors of zero. Consequently, if 

, )
D

,f g D , hence supp  and ,suppf g [0, )  0f g  , then 0f   or 0,g   where f g  is defined 

as follows 

      , ( ) ( ), ( ) ( ), ( ), ( ) , ( ).f g f x g y x y f x g y x y D          �  (2.7)

 We observe that mechanical quantities  defined by (2.5) represent function type 

distributions from , because their supports are in [ , . 

, , , ,v q T M  

] [0a bD , ) 

 For these functions and their derivatives, the points , 1,ic i n  generally represent points of 

discontinuities of the first kind. Thus, the action point  of the concentrated force  represents a ic iP

 



 Antonela Toma 4 

discontinuity point of the first kind for the shearing force ( ),T x x �  and the derivative ( )xM x   of the 

bending moment ( ),M x x �

ic

. 

 Also, the action point  of the concentrated moment of intensity  (which determines the clockwise 

rotation) is the discontinuity point of first kind for the bending moment 

i

M x

m

( ), x �  and the ordinary point 

for the shearing force . ( ),T x x �

 Consequently, a point , 1,ic i n  can be a discontinuity point of the first kind both for  and (T x )

( )M x . 
 Taking into account the definition of the shearing force and of the bending moment we state [7]: 

 The jump of the shearing force ( ),T x x �  at a point ,ic i 

( 0),iT c 

1, n  denoted by  has the 

expression 

( ) ,
ic

T x  


( ) ( 0)
i

i ic
T x P T c      
   (2.8)

where  represents the intensity of the concentrated force applied at the point . iP ic

 The jump of the bending moment ( ),M x x �  at a point ,ic i 

( 0),iM c 

1, n  denoted by  has the 

expression 

( ) ,
ic

M x  


( ) ( 0)
i

i ic
M x m M c      
   (2.9)

where  represents the intensity of the concentrated moment applied at , having the direct rotation sense 

shown in Fig. 1.1. 
im ic

 According to [5], we state 

 Let be f  a real-value function of class C1( )�  excepting the points , 1, ni c i , where it has 

discontinuities of first kind with the jump  ( ) 0
i

ic
f x ( 0) (i f cf c )  

( ),
i

; then 

 
1

( ) ( ) ( )
n

x x ic
f

i

x f x f


    x x c   (2.10)

where ( )ix c ( )D  �  represents the Dirac distribution concentrated at the point . ic
 Using the formula (2.9), we state 

 The function type distributions ( ), ( ), ( ),v x q x T x ( )m x D   defined by (2.5) satisfy in D  the 

following equations 

1

( ) ( ) ( )
n

( ),x i iP x c 

( ),

i

T x q x kv x


       (2.11)

1

( ) ( )
n

x i i
i

M x T x m


     x c  (2.12)

    ) ,
b

b 2 ( ) ( ) ( ) ) (x x xa b a
EI v x M x a v x b a v x             

   ( )x EI v  (v x     (2.13)
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   


4
1( ) ( ) ( ) ( )

( ) ( ) ,

x a b

x xa b

EI v x kv x q EI v x a v x b

v x a v x b

 

 

       

            

   

  


 (2.14)

where the distribution 1( )q x D  has the expression 

1
1 1

( ) ( ) ( ) ( ).
n n

i i i
i i

q x q x P x c m x c 
 

      i

)i )i

 (2.15)

 This distribution represents the resultant of the densities of the distributed loads  of the 

concentrated forces  and of the concentrated moments 

( ),q x

1

(
n

i
i

P x c



1

(
n

i
i

m x c


   given and constraint. 

The symbol  
ic
 represents the jump of a certain value at the point ix c , and   represent the 

intensity of the concentrated forces and the intensity of the concentrated moment at the point 

,iP im

, 1, ,nic i  

respectively 

 Indeed, because the shearing force T  is of class  1( )C �  excepting the discontinuity points of first kind 

, 1,ic i n ; on the basis of the formulas (2.7) and (2.10) we have 

1 1

( ) ( ) ( ) ( ) ( ).
i

n n

x x i xc
i i

T x T x T x c T x P x c 
 

               
i i  (2.16)

 Using the first equation from (2.6) we obtain 

1

( ) ( ) ( ) ( ),
n

x i i
i

T x q x kv x P x c


         (2.17)

namely the equation (2.11). Proceeding analogously and taking into account that the bending moment M  is 

of class  excepting the discontinuity point of the first kind 2 ( )C � , 1,ic i n , we can write 

1

( ) ( ) ( ).
i

n

x x ic
i

M x M x M x c


          (2.18)

 Taking into account the formulas (2.9) and (2.6), we obtain 

1

( ) ( ) ( ),
n

x i i
i

M x T x m x c


       (2.19)

namely the relation (2.12). 

 From (2.2) and (2.5), it results that the deflection 1( )v C �  excepting the discontinuity points of the 

first kind  and . 1c a 2c b
 Consequently, we have 

   ( ) ( ) ( ) ( ).x x a b
v x v x v x a v x b            (2.20)

 The differentiation of the above relation in the distribution sense yields 

   ( ) ( ) ( ) ( ).x x a b
v x v x v x a v x b            (2.21)

 On the basis of the last relation from (2.6), we obtain 
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    
    

2 2( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ,

x x x xa b a b

x xa b a b

EI v x EI v x EI v x a v x b v x a v x b

M EI v x a v x b v x a v x b

   

   

                   

                 

      

     

 

(2.22)

namely the relation (2.13). 

 As far as the equation (2.14) is concerned, this is obtained by the elimination of the values T  and  M  
from the equation (2.11) and by the equations obtained from the first derivative of the equation (2.12) and 
the second derivative of the equation (2.13). 
 We remark that the equations (2.11), (2.12) and (2.13) represent the complete system of equations of 
bending the elastic rod of on an elastic foundation in the distributions space ( ),D D    with respect to 

the mechanical quantities  and , ,v T M . 
 The fourth order differential equation (2.14) represents the bending equation of elastic rods on an 
elastic foundation and it is written only with respect to the deflection v  of the rod in the distributions space 

. 



D
 

3. CONCLUSION 

The obtained system of equations in the distribution space D  displays the following advantages: 

1. it incorporates all the continuous and discrete loads; 
2. it contains the boundary conditions as well as the constrained loads; 
3. due to the writing of the equations in D  we can determine the expressions of all unknowns of the 

problem under a unitary and general form. 
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