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Using the Gauss-type quadrature formulas one discretizes the hyper singular integral equations of the 
lifting line with ground or tunnel effects. Numerical calculations are performed for the elliptical and 
rectangular flat wings. Ground and tunnel effects are pointed out. 
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1. INTRODUCTION 

Prandtl’s lifing line theory [1], [6], [14] is the first mathematical model for the three-dimensional wing 
(the finite span airfoil). It was elaborated in 1918 by L. Prandtl and it remained during the first half of the 20-
th century the only theory for this wing. The German scientist, gifted with an extraordinary engineering 
intuition, guessed very well the simplifications which may be performed in order to obtain an integro-
differential equation for the circulation in a cross section of the wing. Later, Homentcovschi [12], Dragoş [9]  
have shown that the one-dimensional lifting line equation may be obtained from the two-dimensional lifting 
surface equation by means of a technique which consists in fact in the asymptotic expansion of the kernel 
with respect to the aspect ratio. Lifting line equation, the equation of the jump of the pressure for the wings 
of low aspect ratio and the integral equations for the two-dimensional profiles are the one-dimensional 
integral equations of aerodynamics for which numerous numerical schemes were conceived (we mention for 
example [2], [3], [4], [5], but the list is much longer). Apart from the mathematical theory (where we have to 
take also into account the boundary layer and turbulence effects) many experiments are performed in the 
wind tunnels. For the interpretation of the experimental results one has to perform wall corrections [13]. For 
these corrections one has to conceive mathematical models and one of the models is presented herein. When 
one of the walls is far from the wing (or it is missing) instead of tunnel effects one encounters ground effects. 
The ground effect is understood as an increase in the lift-to-drag ratio of a wing moving close to the ground. 
In order to exploit the ground effect a wing-in-ground-effect vehicle has been conceived. It is the ekranoplan 
which can be defined as a vehicle with an engine and heavier than air that is designated to fly close to an 
underlying surface for efficient utilization of the ground effect [15]. In our paper  we employ Gauss-type 
quadrature formulas for solving the lifting line equations in ground and tunnel effects. We employ the lifting 
line equation in ground effects given by  Dragoş in [6]. For obtaining this equation, in order to satisfy the 
slipping condition on the ground, Dragoş placed in the free fluid stream another wing symmetric to the 
original one with respect to the ground-plane [6], [10]. This is in fact a variant of the well known image 
method. In our paper, in order to study the tunnel effects, we generalize this method by placing a grid of 
wings such that each wall of the tunnel should be a plane of symmetry for the wings from the cascade. 
Utilizing the integration by parts we transform Prandtl’s integro-differential equation into an equation 
containing the finite part of a hyper singular integral with a generalized Cauchy kernel. For this integral we 
utilize the very efficient Gauss-type quadrature formulas given by Dragoş in [6], [7], [8]. In the case of 
elliptical flat wing we compare the numerical results with analytical ones and we notice a perfect agreement. 
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We also notice that in the presence of the walls of the tunnel, the circulation increases. We calculate the lift 
coefficient for the rectangular flat wing in ground effects and we notice that the coefficient increases as the 
wing comes near the ground.    

2. THE STATEMENT OF THE PROBLEM 

A uniform subsonic stream (Mach number M<1) is perturbed by a thin airfoil having the equation (in 
dimensional variables) 
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be the equations of the leading and trailing edges of the airfoil.  For an airfoil placed in a free uniform flow 
we have Prandtl’s lifting line equation [1], [6], [14]: 
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Figure 1. 



3 Lifting line equation including ground and tunnel effects  

According to Dragoş [6], if we want to take into account the ground effects ( we consider that 
2
dz −=  

is the equation of the solid plane representing the ground, where we impose the slipping condition which 
states that the normal component of the velocity must vanish) we have to modify Prandtl’s equation  which 
becomes 
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We notice that a new kernel has been added 
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with η−= yy0 and 

( )
3,1,

)(
)(

)(1),(
222

0
22

)(

)(
0 =

++
−

−
−= ∫

+

− +

− υ
β

π υυ dx
dyx

x
xyx

yxx
yyI

yx

yx

 (6)

In order to obtain eq. (4) one employed the image method (figure 1). According to this method the 

presence of an airfoil symmetric to the initial one with respect to the 
2
dz −=  plane ensures the achievement 

of the slipping condition on this plane..  

In the sequel we shall consider a wing in the tunnel 
22

1dzd
<<− . The slipping conditions on the 

walls is achieved if instead of the original airfoil we consider an infinite grid of airfoils for which the walls 
of the tunnel represent planes of symmetry, i.e. we shall consider the airfoils 
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Indeed, the airfoils )(),( 1 ddndyxhz ++−−= are the symmetric of the airfoils 

with respect to the plane )(),( 1 ddnyxhz +−=
2
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Adding for each additional airfoil of the grid a kernel of form (5) into Prandt’l equation we obtain the 
following equation for the circulation in a cross section of the lifting line in a tunnel: 
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Performing the change of variable 
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we get for the integrals  the expression : υI
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3.THE DISCRETIZATION OF THE LIFTING LINE EQUATION 

Performing the change of variables 00,, yybyby ′=′=′= ηηη  and denoting again  
)(),(),(,,, 0 yayjCyy ηη instead of )(),(), ybaybj(,,, 0 bCyy ′′′′′′ ηη , equation (7) becomes: 
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Since , we shall seek for a solution of equation (11) having the form 0)1( =±C )(1)( 2 ycyyC −=  
where  is finite. )1(±c

For calculating the integrals from (9) and (11) we employ the Gauss quadrature formulas given in [6] 
and [8]. Denoting )(),(),( jjjjjj yjjyaaycc ===  for mj ,...,1= , we have: 
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Employing the previous quadrature formulas we calculate  and the integrals  as follows: 0N υI
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By utilizing the quadrature formulas we discretize the lifting line equation and we obtain the linear 
algebraic system: 

.,...,1,2
1

mjbjcA jk

m

k
jk ==∑

=

 (21)

where we denoted: 

( )( )

( )( )

2 2
0 1

2 2
0 1

, 0

2 1 ( 1) ,0, ( ) 1
2 1

,0, ( ) 1
1

jj j j j j
n

j j
n n

A b y a m b N by d n d d y
m

b N by n d d y
m

∞

=−∞

∞

=−∞ ≠

π π
= β − + + + − + + − −

+
π

− + −
+

∑

∑

2

 (22)

( )
( )( )

( )( )

2
2 2

0 12

2 2
0 1

11 ( 1) , , ( ) 1
1 1

, , ( ) 1 , .
1

k j k
jk j j j k k

nk j

j j k k
n

yA a b N by by by d n d d y
m my y

b N by by by n d d y k j
m

∞
+

=−∞

∞

=−∞

−π π⎡ ⎤= − − − + − − + + − −⎣ ⎦+ +−

π
− − + − ≠

+

∑

∑
(23)

4. LIFT COEFFICIENT. NUMERICAL RESULTS 

 We shall study the flat elliptical airfoil with angle of attack ε  i.e. 
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 For the airfoil in a free stream ( ∞→∞→ 1,dd ) the exact analytical solution is known [6]: 
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Numerical results for the circulation C(y) have been obtained for 1=b , 1.0=ε , , 10=m 1=β , 
 and for various values of and  in figure 2. We notice that for great values of d  and  

the exact and the numeric results are very close. 
[ 20,20−∈n ] d 1d 1d

For calculating the lift coefficient 
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(where A stands for the area of the wing) one may employ the formula 
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The second wing that we are considering is the rectangular flat wing 
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Figure 2. 

 We calculate for 100,100,10,1 1 ==== ddbβ  the coefficient 
εb

AC
k L

L =  and we find for 

the value  The same value was obtained in [11] for the rectangular wing in a 
free uniform stream (no ground or tunnel effects). 
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In table 1 we consider  and we present the coefficient  versus d in order to investigate the 
ground effects. We notice that the lift coefficient increases as the wing comes near the ground. 

1001 =d Lk

   Table 1 

d 2 3 4 5 6 7 8 9 10 100 
Lk  0.660 0.618 0.596 0.585 0.574 0.566 0.559 0.554 0.549 0.511 
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