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A coupled atomistic-continuum theory for describing the twist of nanoropes is proposed in this 
article. The model couples a region described with full atomistic detail to a surrounding region 
modeled with the continuum concepts. The shifted Chebyshev polynomials of the second kind and a 
generalization of Vekua and Nikagadze methods are performed on the base of a nonclassical 
parametrization of the transition region. 
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1. INTRODUCTION 

The concept of the space elevator was introduced by russian scientist Konstantin Tsiolkovsky in 1895, 
based on the Eiffel Tower in Paris. This space elevator must be able to launch objects into orbit without a 
rocket. The Tsiolkovsky's concept is a compression structure, rather than a tension structure. After the 
development of carbon nanotubes in the 1990s, it was realized that the small dimensions, strength and  
remarkable mechanical properties of carbon nanotubes make them a very unique material which might make 
the concept of an orbital skyhook feasible [1]-[6]. 

Generally, the nanoropes are made from fullerene single-wall carbon nanotubes. These materials are 
produced of more than 70 percent by condensation of a laser-vaporized carbon-nickel-cobalt mixture at 
1200°C. X-ray diffraction and electron microscopy showed that these carbon nanotubes are nearly uniform 
in diameter and that they self-organize into ropes, which consist of 100 to 500 carbon nanotubes in different 
arrangements. Fig. 1.1 shows such a carbon nanotube rope made from 6 subropes, each subrope being 
composed from 7 groups of single wall carbon nanotubes. Each group contains 25 carbon nanotubes with 
two different radii (zigzag and armchair 6.26A, h = 0.617A and 16.33A, h = 0.998A), and the core group 
consists of 49 chiral carbon nanotube with the same radius (3.22A and h = 0.6A), into a polymeric matrix. 

 
Fig. 1.1. The structure of nanorope. 
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In this paper, a coupled atomistic-continuum theory is performed for describing the twist of nanoropes 
made from single-walled carbon nanotubes [7]-[10]. The model couples a region described with full 
atomistic detail to a surrounding region modeled with the continuum concepts. The shifted Chebyshev 
polynomials of the second kind and a generalization of Vekua and Nikagadze methods are performed on the 
base of a nonclassical parametrization of the transition region.  

2. CHEBYSHEV POLYNOMIALS 

 The polynomial Chebyshev of second kind on the interval [ 1,1]−  are given by [11]-[13] 

1( ) [1/( 1)] ( )n nU x n T x+′= + , 1 1x− ≤ ≤ , 0n∈Ν . (2.1) 

In (2.1), are the Chebyshev polynomials of the first kind, and is a set of 
natural numbers. The shifted Chebyshev polynomials are defined as 

( ) cos( arccos )nT x n x= 0Ν

* ( ) (2 1) {1/[2 (1 )]}sin[( 1)arccos(2 1)]n nU t U t t t n t= − = − + − , 0 1t≤ ≤ . 

The functions  
* 2( , ) 1/[1 ) 4 ]F r t r rt= + − , *( ) 2 2(1 )h x t= − , | | 1r ≤ , 0 1t≤ ≤ , (2.2) 

are the generating and weighting functions for these polynomials . 
To obtain the basic recurrence relations, the first can be derived for and then for by 
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In these expressions  with [[ ]1 2 ( 1) / 2a n n= − − − ]x  the integer part of x .  The expressions  (2.3)-
(2.9) with the exception of (2.7) contain the orthogonal Chebyshev polynomials *

0{ }k k
∞
=U  of the second kind, 

defined as U U* * 1|| ||k n
−= *

kU , with  the shifted polynomial Chebyshev of second kind on the interval [  
and 

*
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*|| || / 2kU = π , the norm of . Relation (2.7) can be written for orthogonal polynomials as *
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3. MACROSCOPIC AND MICROSCOPIC MODELING 

At the macrosopic, the carbon nanorope is modeled as a rod of length l, with circular cross section of 
radius less than its length . A new parametrization is applied to the region occupied by the body a << l

[ , ]x a a∈ − , [0, ]s l∈ , for a given time interval [0, ]t T∈ . Instead of [ , ]x a a∈ −  we can use . For any 
integrable function , , 

[0,1]x∈
( , )A x s [0,1x∈ ] [0, ]s l∈ , [0, ]t T∈ , we consider an expansion of the form 

 ( ) *
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k
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=∑ ,  [0,1]x∈ , [0, ]s l∈ , [0, ]t T∈ , (3.1) 

where  is the kth coefficient in the expansion of  in the orthonormal Chebyshev 
polynomials 
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where is a properly chosen weighting function. This integral verifies the property of linearity ( )h s
( )[ ( ) ( ) ] ( ) ( ) ( ) ( )k kI s A s B s I A s Iα +β = α +β k B , (3.3) 

for any functions  and A B of the form (3.1).  Also, it is easily to show that  defined by (3.3) is equal 
to the kth coefficient in the expansion of  in these polynomials with respect to 
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External moments fix the ends of the tube. At the macroscopic scale, we know the motion of the rod 
between  and  if and only if we know the mapping 0t = ijr 1(0, ), [0, ]S t t t∀ ∈ , which takes a material point in 

 at t  = 0  to a spatial position in at t  = . The mapping is single valued and possess continuous 
partial derivatives with respect to their arguments.  The position of a material point in  may be denoted by 
a rectangular fixed coordinate system 

0Ω ( )tΩ 1t

)
0Ω

( , ,X X Y Z≡  and the spatial position of the same point in ( )tΩ , by 
the moving coordinate system ( , , )x x y z≡ . The motion of the rod carries various material points through 
various spatial positions. The curvature C , in the longitudinal direction, the nondimensional curvature , the 
deformation parameter 

c
ζ , are defined as 
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where R  and cR , are the radius before and after deformation. The strain energy per unit length  is given 
by 
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The energy (3.6) can be expressed under the form (3.1) 
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where , [0,1]cx ∈ [0, ]cs l∈
( )k

 represents the region occupied by the body, where the continuum theory is valid, 
for . In (3.7),  is the kth coefficient in the expansion of [0, ]t T∈ ( , )L s t ( , , )x s tΠ  in the orthonormal 
Chebyshev polynomials *{ ( )}kU x ∞

0k= of the second kind. These coefficients can be calculated with (3.4). The 

total energy of the tube and the bending moment tΠ M  can be written as t lΠ =Π ,   d
d

tM Π
=

ϑ
, where ϑ  is 

the bending angle. The critical compressive stress cr
N
h

σ = , where N  is the axial load, and the critical 

bending moment crM in local buckling can be also calculated. This theory is valid up to the point of 
local buckling at a specific value for the bending angle ϑ .The elastic energy is the bending and twisting of 
each nanotube summed over all nanotubes. For unit nanorope length, bending and torsional energies of each 
nanotube depends on its bending and torsional stiffness EI and . The total energy of the twisted rope is 
expressed as a function of the bulk twist angle 

GJ
φ . 

Secondly, the atomistic modeling of the bar is analyzed. The total atomic energy aE  can be expressed 
as a sum of individual atom energies. The energy of an atom is 

1( ) ( )
2

a
i i i i ij ij

j i

E F V
≠

= ρ + α∑ r , (3.8)

where iF  is an electron-density dependent embedding energy,  is a pair potential between -th and -th 
and  is the interatomic distance, and  unknown constants. The electron density at atom i, 

ijV i j

ijr iα iρ  is the 

superposition of density contributions from each of the neighbours ( )i j
j i

r
≠

ρ = ρ ij∑ .  

The van der Waals force refers to the attractive or repulsive forces between molecules or between parts 
of the same molecule, other than those due to covalent bonds or to the electrostatic interaction of ions with 
one another or with neutral molecules. In this article this force is introduced to model the interaction between 
the opposite walls of the nanotube when they approach each other. This force depends on the distance 
between the atoms. For large distances, the van der Waals force is attractive, but when the separation 
between the atoms is below the critical equilibrium distance, it becomes strongly repulsive. The van der 
Waals force between atom i and j can be expressed by the Lennard-Jones 6-12 potential as 

6
0

12 6

1 1( )
2ij ij

ij ij

dV r A
r r

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
. (3.9)

where  and are parameterized to describe interlayer forces in graphite [14], 
[15]. For the energy field 

79 624.3 10 JmA −= × 0 0.383nmd =

, )(aE x s  we consider an expansion of the form (3.1) 
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∞

=
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where , [0,1]ax ∈ [0, ]as l∈  represents the region where the atomistic theory is valid. In (3.3), ( ) ( )a kE s  is the 
kth coefficient in the expansion of aE  in the orthonormal Chebyshev polynomials { (* )}kU x ∞

0k= of the second 
kind. These coefficients can be calculated with (3.4). 

For nanoropes, the inclusion of non-bonded interactions is important, because this explains the inter 
tube rotational mode as a result of long range van der Waals forces. 

Thirdly, the transition region between continuum and atomistic regions are modeled. On one side of the 
transition boundary is the atomistic region in which every atom is explicitly represented and treated by using 
interatomic potentials. The transition or boundary region between the atomistic and continuum regions is a 
very important aspect of the modelling. 

At the interface between the atoms and the nodes of the continuum region, we construct a one-to-one 
correspondence with the aid of the Chebyshev polynomials of the second kind. The parametrization of the 
transition region , [0,1]trx ∈ [0, ]trs l∈  is constructed such that the following assertion is valid. 

Assertion.  The energy field ( , )trE x s  of the transition region verifies the conditions 

( , ) ( , )tr cE x s E x s→ for tr cx x→ , tr cs s→  (3.11)

and 

( , ) ( , )tr aE x s E x s→ for tr ax x→ , tr as s→ , (3.12)

where 

( ) *

0
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k
k

E x s E s U x
∞

=

=∑ , (3.13)

with , [0,1]trx ∈ [0, ]trs l∈ . 
In (3.13) ( ) ( )tr kE s  is the kth coefficient in the expansion of ( , )trE x s  in the orthonormal Chebyshev 

polynomials *
0{ ( )}k kU x ∞

= of the second kind. These coefficients can be calculated as 

1
( ) *

0

( ) ( , ) ( ) ( )dk tr a
k aE s E x s U x h x→ ∫ x , 0k∈Ν , for tr ax x→ , tr as s→ , (3.14)

and 
1

( ) *

0

( ) ( , ) ( ) ( )dk tr c
k cE s E x s U x h x→ ∫ x , 0k∈Ν , for tr cx x→ , tr cs s→ , (3.15)

with unknown functions  and that are determined from an inverse problem such that (3.11) and 
(3.12) hold. 

( )ah x ( )ch x

The total potential energy of the coupled atomistic-continuum model is obtained by summing the 
energies associated with the atomistic, continuum and transition regions as 

( , ) ( , ) ( , ) ( , )c a tr
c c a a tr trE x s E x s E x s E x s= + + , ( , )c c cx s I∈ , ( , )a a ax s I∈ , ( , )tr tr trx s I∈  

 , [0,1] [0, ]c a trI I I l∪ ∪ = × i jI I O∩ = , , , ,i j a c tr= . 
(3.16)
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4. RESULTS 

The elastic moduli of nanotubes used in the calculations are E = 1.347 TPa and G = 0.547 TPa, and the 
bending and torsion stiffness are calculated based on a main nanotube thickness 0.34 nm [16], [17]. The 
assertion (3.11)-(3.13) is verified by calculating the equilibrium bulk twist eqφ  at the interface between the 
atomistic and continuum regions. As we see in fig. 4.1, the nonclassical parametrization assures a good 
continuity of solutions.  

 
Fig. 4.1  The variation of the equilibrium twist at the transition region for  a nanorope of radius 48nm (left ) and 50nm (right). 

 
Fig. 4.2 shows the rope radius dependence of the equilibrium bulk twist eqφ with the nanorope radius 

R . The behavior of nanorope at twisting can be divided into three distinct regimes, separated by dotted lines 
[17]. In regime I, defined by , it is no twist. Regime II is defined by 

, and is characterized by a stable twist. The regime III for , shows 
unabated twist. The last region has to be investigated in details because here, the stored elastic energy is too 
small to offset the enhanced cohesive energy of the nanorope. Ideally, the crystal should continually twist, 
but in practice, as explained Liang and Upmanyu [17], the prediction is the nanorope dissembles into smaller 
radii nanoropes. 

1 40nmR R< =

1 2nm 52nmR R R= ≤ ≤ =40 52nmR >

  

 
                                  Fig. 4.2. The rope radius dependence of the equilibrium bulk twist with the nanorope radius. 
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4. CONCLUSIONS 

In this paper, a coupled atomistic-continuum theory is performed for describing the twisting of 
nanoropes made from single-walled carbon nanotubes. The model couples a region described with full 
atomistic detail to a surrounding region modeled with the continuum concepts. The shifted Chebyshev 
polynomials of the second kind and a generalization of Vekua and Nikagadze methods are performed on the 
base of a nonclassical parametrization of the transition region. This study is motivated by the fact that while 
there are several advantages to forming bulk single crystals of carbon nanotubes, the assembly of them has 
been limited to rope radii less than 30 nm [17]. The results show a strong capacity of nanoropes for twisting, 
that makes nanoropes to be unprecedented candidates for the ultimate conductors for use in nanoscale 
devices.  

We can say that the equilibrium and the stability of the nanorope twisting is a function of radius, and is 
determined by the competition between individual nanotube elastic deformations and the nanorope cohesive 
energy. 
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