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We describe a method of the optimization of a power supply system with regard for the interrelations 
between energy sources and sinks. 

 
An energy supply system represents an assemblage of dissimilar elements with a complex scheme of 

technological connections [1, 2]. The processes of the transformation, transfer, and redistribution of different 
kinds of energy, accompanied by changes in the parameters of state and flow rates of working media, take 
place in this system. 

The combination energy sources - energy sinks is an integral part of an energy system. For energy 
supply systems, the problem of optimal choice of the complex mentioned above is quite substantial. The 
optimization problem becomes especially important in those cases where there are several different energy 
sources, including, e.g., renewable energy sources, and several energy sinks of different power. 

As shown in [3, 4], the problems of this class can be solved with the use of a graph of exergy and 
economic expenditures for the pairwise interaction of flows. Let us concretize the concept of a graph of 
exergy and economic expenditures as applied to energy supply systems (ESS). In this case, we can consider 
the heat source as a heating (hot) flow and the heat consumer as a heated (cold) flow. 

We shall interpret a graph of the exergy and economic expenditures of an ESS, having an arbitrary 
structure, as a bipartite graph ( ) ( )DHCHCZ n ,, ∪=Γ∪=  such that the set of its nodes ( )HC ∪  
corresponds to the heating { }mj hhhh ,...,...., 21H = and heated { }ni cccc ,...,...., 21C = flows, and the set of its 

arcs  to a possible distribution of the exergy and economic 
expenditures in the corresponding elements of this ESS in the course of interaction between the heating and 
heated flows. 

{ } ichD ii ,....2,1,, == n,...,2,1=jm;

It is worth noting that a bipartite graph has the following property: the set of its nodes V can be divided 
into two subsets V1 and V2 in such a way that each rib of this graph G connects nodes from different subsets 
(e.g., the ribs of the graph G connect subsets V1 and V2). 

It is easy to show [5] that a graph of exergy and economic expenditures is a simple graph of the form 

=∩CH ∅, (1) 

( ) ChHh ini ∈Γ∈∀  (2) 

( ) =Γ∈∀ jni cCc ∅ (3) 

A graph of exergy and economic expenditures is an oriented and asymmetric graph. A graph is called 
asymmetric if it has no automorphisms different from the identical one. Here, the isomorphism of a graph G 
onto itself is called its automorphism. Thus, every automorphism of the graph G is a substitution of the set of 
nodes V, preserving contiguities. 
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Moreover, the connectivity of a graph of exergy and economic expenditures has a limited character  
obeys the condition 

 and

( ) =Γ∈∀ −
jni cCc 1 ∅ (4) ( ) =Γ∈∀ j ∅,  ni hHh

Consider successively a series of additional definitions. We interpret a covering of a graph of exerg  
and economic expenditures  as such a subset of arcs 

y
( )DHCZ ,∪= DD ⊂  for which 

( ) ) ijiiii hDchDchHh +⊂∈∃∈∀ ,,, ; (5) 

( ) ) ijiiij hDchDchCc −⊂∈∃∈∀ ,,,  (6) 

It is easy to see that relations (5) and (6) represent the necessary and sufficient condition of the 
existence of a covering of a graph of exergy and economic expenditures, i.e., a graph of exergy and 
economic expenditures always possesses a covering. The covering  represents combinatorial configurations 
connected by the multivalued mapping of one set onto another. In the problems of coverings, the possibilities 
of constructing efficient algorithms for the solution of these problems are studied. This means that, for each 
heating and each heated fl ays find at least one flow with which the flow under consideration 
can enter the process of heat exchange. 

A covering s minimum if 

ow, one can alw

DD ⊂0 i

DDDD ≤⊂∀ 0,  (7) 

In the general case, we have 

.; 00 DCDH ≤≤  (8) 

As applied to an actual ESS, conditions (8) indicate that the number of interacting couples heat source - 
heat c

um covering represents a collection of unities such that 
any r

ssigned with the help of a subset of nodes where this 
funct se rows represent the collecti

onsumer, being subject to consideration in the synthesized ESS, cannot be smaller than the number of 
elements of greater of the sets |C| or |H|. 

In the Boolean-matrix presentation, the minim
ow and any column of the matrix contains at least a single element from this collection, and the total 

number of elements of this collection is minimum. 
A Boolean function of n arguments can be a

ion is equal to unity. This subset is written in the form of a matrix who ons 
of values of the arguments of this Boolean function. 

A matching of a graph of exergy and economic expenditures ( ) ( )DHCHCZ n ,, ∪=Γ∪=  is 
interpreted as a one-to-one mapping Γv with a number of arcs  suchDV ⊂  that 

( ) ,*
inivi hhHh Γ⊂Γ∈∀ or 

( ) ,1*
jn ccCc −Γ⊂Γ∈∀  jvj

(9) 

i = 1,2, ..., m; j = l,2, ..., n, 
where the subsets C* and H* satisfy the conditions 

.;; **** HCHHCC =⊂⊂ or (10) 

Hence, the numbers of heat sources and heat consumers in the matching under consideration have to be 
equal to one another. The necessary and sufficient condition of the existence of a matching (according t
Koenig - Hall theorem) is 

o the 

( ) *** HHHH n ≥Γ⊂∀  (11) 



3 Exergy and economic optimization of complex power supply systems 

As follows f e Koenig - Hallrom th  theorem, if the elements of a rectangular matrix are unities and 
zeros, then the minimum number of lines containing all unities is equal to the maximum number of unities 
which can be chosen in such a way that, among them, one cannot find two unities located on the same line. 

A matching DV ⊂0 is maximum if 

( ) VVDV ≥⊂∀ 0  (12) 

i.e., the maximum possible number of couples heat source - heat consumer is taken into account in this 
matching. Condition (11) guarantees consideration of the entire s t of heat sources in finding the maxi
matching. In order to guarantee such a consideration for the en re set C of heat consumers as well

e
ti

mum 
, the 

condition 

( ) *** ln CCC ≥⊂∀  (13) 

has to be satisfied. Conditions (11) and (13) imply that 

C −Γ

HC = . 
In actual ESS, both cases HC ≤  and HC > are possible, and the variant HC > can be met much 

more often (for example, the heat supply of several hundreds of consumers from a single regional boiler 
plant). Then, in finding the maximum matching, it is necessary to introduce an additional number of flows 
(fictitious) leading to HC =  (e.g., a single regional bo resented as a f t of several i er pl n  is rep ictitious se
hundreds of small boiler plants for the corresponding heat consumers).The maximum matching is always 
complete. The converse proposition in the general case is incorrect. 

We interpret a support of a graph of exergy losses 

l  a t

( )HCZ  as such a set  for which CHS ⊂⊂nΓ∪= ,

( ) S∀  or Sc j ⊂ , hDch jji ⊂⊂, , (14) 

i.e., at least one of the nodes of each arc of this graph is included to the set S . ## 
The support SS ⊂0  of a graph  is minimum if ( )DHCZ ,∪=

SSCHS ≤∪⊂∀ 0, . (15) 

As applied to the synthesized ESS, the minimum support of a graph ( )nHCZ Γ∪= ,   represents a set 
CHS ∪⊂0 of heat sources and consumers with the minimum total number of elements SS min0 = such 

that the number of variants of their joins both between themselves and with the remaining set 
0SHC −∪ proves to be maximum. In other words, each of 

in the ESS will include at least one of the elements of the set S0. Furthermore, as follows from the Ko
theor

the subject couples heat source-heat consumer 
enig 

em, 

00

Equality (16) serves as a basis in the construction of an algorithm for finding the minimum support of a 
graph of exergy expenditures. 

VS = . (16) 

Consider the matrix form of an algorithm for the optimal synthesis of a single-loop circular heat 
supplying system [6, 7], based on the method of finding the Hamiltonian contour [8] of the symmetric graph 
of thermal and economic expenditures ( )UAZ ,=  shown in Fig. 1. 

Recall that a route (contour) is called a Hamiltonian chain (Hamiltonian cycle) if it contains all nodes 
of the

ribs m
of its 

ribs is si ilar as well. 
It represents an oriented graph, whose arcs can be grouped into pairs of parallel but oppositely directed 

arcs. Such graphs, having no isolated nodes, are convenient for studying complex interrelated systems. 

 graph and passes through each of them once. A series of conditions of the existence of Hamiltonian 
cycles is well known: the graph does not have loops and multiple ribs, and the numbers of its nodes n and 

 satisfy the conditions ( )635.03 2 +−≥≥ nnmn . 
A symmetric graph is node- and rib-symmetric, i.e., any pair of its nodes is similar, and any pair 

m
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d boundaries, 
which makes ith the use of different methods of exergy analysis 
[6, 7]. The thermal and econom ows ij is given by 

Fig. 1. A symmetric graph of exergy and economic expenditures for a circular energy supply system. 

For finding the optimal solution, researchers prefer to apply the method of branches an
it possible to obtain a solution simpler than w

ic estimate of the interaction of a couple of fl

∑∑=Σ
i j

ijZZ minmin . (17) 

The corresponding expenditures is presented in Fig. 2.  

 
ible values of exergy and economic expenditures in the system are equal to 

 graph of energy and economic 

Fig. 2. A graph of exergy and economic expenditures. 

The poss
( ) Aij aAaaaZ ijijiZ ∈∀∈∀ ,,, , atrix of exergy and economic expenditures of dim=  where A is the m ension 

m × m (Fig. 3). 
The value of the sum ∑ ∑+=Σ

i j
ji ZZZ minmin0 gives the lower boundary of the set of solutions. 

If we have determined the optimal pair of elements (ai aj), corresponding to the sequence of nodes, 
beginning from the root of the foretree and finishing by a suspended node, giving a matrix of unit dimension, 

a2 ai 

a1 am

Z2i 

Zi2 

Z1i 

Zi1 

Z12i Z21i 

Zmi Zim

Z1m

Zm1
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Z22 
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Zmj

Zm2

Zi2

Z1n

Zij 

Z21
Z12 

Zm1
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cj

cn
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hi 

hm

Z j2  

Zmn
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then the obtained sequence of elements forms a single-contour system with the minimum level of exergy and 
economic expenditures. 

 
 

For finding the optimal solution (Fig. 3), it is customary now to use the method of branches and 
boundaries, which enables one to improve the solution simpler than with the application of different methods 
of exergy analysis [9, 10]. 

 
Fig. 3. A matrix of thermal and economic expenditures corresponding to the graph of thermal and economic expenditures in Fig. 1. 

mi a...a...aa 21  
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