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We describe a method of the optimization of a power supply system with regard for the interrelations
between energy sources and sinks.

An energy supply system represents an assemblage of dissimilar elements with a complex scheme of
technological connections [1, 2]. The processes of the transformation, transfer, and redistribution of different
kinds of energy, accompanied by changes in the parameters of state and flow rates of working media, take
place in this system.

The combination energy sources - energy sinks is an integral part of an energy system. For energy
supply systems, the problem of optimal choice of the complex mentioned above is quite substantial. The
optimization problem becomes especially important in those cases where there are several different energy
sources, including, e.g., renewable energy sources, and several energy sinks of different power.

As shown in [3, 4], the problems of this class can be solved with the use of a graph of exergy and
economic expenditures for the pairwise interaction of flows. Let us concretize the concept of a graph of
exergy and economic expenditures as applied to energy supply systems (ESS). In this case, we can consider
the heat source as a heating (hot) flow and the heat consumer as a heated (cold) flow.

We shall interpret a graph of the exergy and economic expenditures of an ESS, having an arbitrary
structure, as a bipartite graph Z =(C UH,I,)=(CUH,D) such that the set of its nodes(CUH)

corresponds to the heating H = {hl,hz,....hj,...hm }and heated C ={c,,C,....C;....C, | flows, and the set of its

arcs Dz{h- C-}, i=1,2,..m;j=1,2,..,n to a possible distribution of the exergy and economic

121
expenditures in the corresponding elements of this ESS in the course of interaction between the heating and
heated flows.

It is worth noting that a bipartite graph has the following property: the set of its nodes V can be divided
into two subsets V; and V, in such a way that each rib of this graph G connects nodes from different subsets
(e.g., the ribs of the graph G connect subsets V, and V,).

It is easy to show [5] that a graph of exergy and economic expenditures is a simple graph of the form

HNC =0, (D)
(vh, e H)I,h eC ()
(Ve eC)lc; =D 3)

A graph of exergy and economic expenditures is an oriented and asymmetric graph. A graph is called
asymmetric if it has no automorphisms different from the identical one. Here, the isomorphism of a graph G
onto itself is called its automorphism. Thus, every automorphism of the graph G is a substitution of the set of
nodes V, preserving contiguities.
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Moreover, the connectivity of a graph of exergy and economic expenditures has a limited character and
obeys the condition

(vh eH)hy =@, (V¢ eC)l'c, =@ “4)

Consider successively a series of additional definitions. We interpret a covering of a graph of exergy
and economic expenditures Z =(C U H,D) as such a subset of arcs D < D for which

vh e H,3(h,c;)eD| h,c;)c D+h; (5)
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cheC,EI(h- C-)€5| hi,Cj)c D-h Q)

It is easy to see that relations (5) and (6) represent the necessary and sufficient condition of the
existence of a covering of a graph of exergy and economic expenditures, i.e., a graph of exergy and
economic expenditures always possesses a covering. The covering represents combinatorial configurations
connected by the multivalued mapping of one set onto another. In the problems of coverings, the possibilities
of constructing efficient algorithms for the solution of these problems are studied. This means that, for each
heating and each heated flow, one can always find at least one flow with which the flow under consideration
can enter the process of heat exchange.

A covering D, < D is minimum if

vDc D,

D,| <[D] Q)
In the general case, we have

[H|<[By

B ®)

As applied to an actual ESS, conditions (8) indicate that the number of interacting couples heat source -
heat consumer, being subject to consideration in the synthesized ESS, cannot be smaller than the number of
elements of greater of the sets |C| or [H].

In the Boolean-matrix presentation, the minimum covering represents a collection of unities such that
any row and any column of the matrix contains at least a single element from this collection, and the total
number of elements of this collection is minimum.

A Boolean function of n arguments can be assigned with the help of a subset of nodes where this
function is equal to unity. This subset is written in the form of a matrix whose rows represent the collections
of values of the arguments of this Boolean function.

A matching of a graph of exergy and economic expenditures Z = (C UH,I, ): (C UH, D) is
interpreted as a one-to-one mapping I'y with a number of arcs V < D such that

(Vh e H*)rhy = Ty, 0r

n-»

) 9
(VCJ- eC )l“vcj cTi'cy,
i=12,...,mj=12,..,n,
where the subsets C* and H* satisfy the conditions
C*CC;H*CH;C*=|H*.0r (10)

Hence, the numbers of heat sources and heat consumers in the matching under consideration have to be
equal to one another. The necessary and sufficient condition of the existence of a matching (according to the
Koenig - Hall theorem) is

(VH" c H)JrH" (11)

2|H*
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As follows from the Koenig - Hall theorem, if the elements of a rectangular matrix are unities and
zeros, then the minimum number of lines containing all unities is equal to the maximum number of unities
which can be chosen in such a way that, among them, one cannot find two unities located on the same line.

A matching V, < D is maximum if

(WV c D)V,|2 V| (12)

i.e., the maximum possible number of couples heat source - heat consumer is taken into account in this
matching. Condition (11) guarantees consideration of the entire set of heat sources in finding the maximum
matching. In order to guarantee such a consideration for the entire set C of heat consumers as well, the
condition

(vC"cC)r-mc’|>[c’ (13)

has to be satisfied. Conditions (11) and (13) imply that |C|=|H]|.

In actual ESS, both cases|C| < |H| and |C| > |H | are possible, and the variant |C| > |H| can be met much
more often (for example, the heat supply of several hundreds of consumers from a single regional boiler
plant). Then, in finding the maximum matching, it is necessary to introduce an additional number of flows
(fictitious) leading to |C| = |H| (e.g., a single regional boiler plant is represented as a fictitious set of several
hundreds of small boiler plants for the corresponding heat consumers).The maximum matching is always
complete. The converse proposition in the general case is incorrect.

We interpret a support of a graph of exergy losses Z = (C UH ,Fn) assuchaset ScH < C for which

v(h.c;)c Dh; =5, or ¢ S, (14)

(ERd

i.e., at least one of the nodes of each arc of this graph is included to the set S . ##
The support S, =S of a graph Z = (C UH, D) is minimum if

VS« H UC,[S,|<[s]. (15)

As applied to the synthesized ESS, the minimum support of a graph Z = (C uH ,Fn) represents a set
S, © H UC of heat sources and consumers with the minimum total number of elements S, = min|S| such

that the number of variants of their joins both between themselves and with the remaining set
C UH —§; proves to be maximum. In other words, each of the subject couples heat source-heat consumer

in the ESS will include at least one of the elements of the set Sy. Furthermore, as follows from the Koenig
theorem,

|SO|:[V0|- (16)

Equality (16) serves as a basis in the construction of an algorithm for finding the minimum support of a
graph of exergy expenditures.

Consider the matrix form of an algorithm for the optimal synthesis of a single-loop circular heat
supplying system [6, 7], based on the method of finding the Hamiltonian contour [8] of the symmetric graph
of thermal and economic expenditures Z = (A, U ) shown in Fig. 1.

Recall that a route (contour) is called a Hamiltonian chain (Hamiltonian cycle) if it contains all nodes
of the graph and passes through each of them once. A series of conditions of the existence of Hamiltonian
cycles is well known: the graph does not have loops and multiple ribs, and the numbers of its nodes n and
ribs m satisfy the conditions n>3m2> 0.5(n2 -3n+ 6).

A symmetric graph is node- and rib-symmetric, i.e., any pair of its nodes is similar, and any pair of its
ribs is similar as well.

It represents an oriented graph, whose arcs can be grouped into pairs of parallel but oppositely directed
arcs. Such graphs, having no isolated nodes, are convenient for studying complex interrelated systems.
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Fig. 1. A symmetric graph of exergy and economic expenditures for a circular energy supply system.

For finding the optimal solution, researchers prefer to apply the method of branches and boundaries,
which makes it possible to obtain a solution simpler than with the use of different methods of exergy analysis
[6, 7]. The thermal and economic estimate of the interaction of a couple of flows ij is given by

Zrn =min ) "7, . (17
i
The corresponding graph of energy and economic expenditures is presented in Fig. 2.

hy

Fig. 2. A graph of exergy and economic expenditures.

The possible values of exergy and economic expenditures in the system are equal to
Z; = Z(ai , 8 lVai € A, Va; € A, where A is the matrix of exergy and economic expenditures of dimension
m x m (Fig. 3).
The value of the sum Z2 = z Zmin 4 Z Z™ gives the lower boundary of the set of solutions.
i j

If we have determined the optimal pair of elements (a; a;), corresponding to the sequence of nodes,
beginning from the root of the foretree and finishing by a suspended node, giving a matrix of unit dimension,



5 Exergy and economic optimization of complex power supply systems

then the obtained sequence of elements forms a single-contour system with the minimum level of exergy and
economic expenditures.
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Fig. 3. A matrix of thermal and economic expenditures corresponding to the graph of thermal and economic expenditures in Fig. 1.

For finding the optimal solution (Fig. 3), it is customary now to use the method of branches and
boundaries, which enables one to improve the solution simpler than with the application of different methods
of exergy analysis [9, 10].
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