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This paper presents a symbolic computational method for manipulators dynamic equations. For a 
certain trajectory imposed to characteristic point, the necessary motor torque is calculated in the 
driving joint. The dynamic model Lagrange - Euler is considered for a manipulator with n degree of 
freedom, for which a symbolic computational algorithm is elaborated depending on input and output 
data. For example, this symbolic calculation is applied to a trimobil planar manipulator, as an open 
kinematical chain. 
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1. INTRODUCTION 

The dynamic modeling of robots [5,6] represents the determination of the dynamic equations, which is 
the first information necessary for robots control [1,4]. These equations are useful for computational 
simulation of the robots motion and for the evaluation of kinematical structure of robots [1]. In the dynamic 
formulation of manipulators the following methods are used: Lagrange-Euler, Newton-Euler, D’Alembert. In 
[5,6] reference books there are discussed only plan manipulators with 2 degree of freedom. For the 
manipulators with more than 2 degrees of freedom (DOF), a very laborious calculation is necessary. The 
Lagrange-Euler method is relatively simple and systematical. As a rule, the dynamic for a device of 
electronic control and the frictions of gearing are not considering. Thus there is obtained a 2nd degree 
equation system. For the robots with 6 DOF, the dynamic equations are nonlinear and very laborious. 
Generally, each term of the inertial force and gravitational force depend of the instantaneous position of the 
kinematical links; the terms moment and force depend on the velocity and the position of kinematical links. 
The dynamic equations are obtained by the Lagrange-Euler method for the non-conservatives systems. If the 
non-dimensional method is used, the dynamic formulation is more efficient. The new method of kinematics 
and dynamics modeling use the homogenous matrix and the lagrangean formulation.  

The objective of the paper is the determination of the robots dynamic equations, when the mechanic 
characteristics are known. In this paper there is proposed a program created in Mathematica programming 
language. This program is developed for the manipulator-robots with open kinematical chains, using only 
revolute and prismatic pairs. Through this program, we obtained: the Denavit-Hartenberg (D-H) parameters 
for robot, the geometric and kinematical model, the effective inertia of each joint, the coupling inertia, the 
Coriolis forces, the gravitational loads and the dynamic equations. 

     2. DYNAMIC MODEL LAGRANGE-EULER 

Is considered the differential equation of Lagrange: 
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where: ;  n – number of DOF;  qi – coordinate of joint j;   - velocity of joint i;  - 
generalized force of joint i. 

pc EEL −= iq iQ

 The kinematics energy of kinematical link i is: 
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where:  
 ri is the position vector of mass 
  is the transfer matrix from the i link attached system to the fixed reference system;  [ ]0
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J r r dm= ∫  is the 4x4 inertial matrix of kinematical link i, with the planar, centrifugal and static 

moments.  
The potential energy of kinematical link i in gravitational field is: 
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The Lagrange function of one manipulator-robot with n kinematical links is: 
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Replacing (2) in (1), we obtain: 
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    The coefficients (6), (7) and (8) are: - effective inertia of joint i; iiD ij jiD D= - coupling inertia between 

joints i and j;  ijk ikjD D=  - Coriolis inertia of joint i due to speeds of joint j and k;  - gravitational loads of 

joint i;  - motor inertia of joint i; - pseudo inertia matrix. 
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3. GEOMETRICAL TRANSFORMATION D-H 

The operator which describes the position and orientation of reference system i relative to system  
i-1 is defined through D-H matrix: 
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where:  and . cosc = sins =
    In an open kinematical chain with revolute joints, the angular parameters ,i iϕ α  and the linear parameters 

 have the following signification (Fig. 1):   ,i ia d 1( ,i iz z− )iα =∠ , 1i ia O A−= , i id = AO . 
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Fig.2. Kinematical chain with prismatic joints 

 
   In the case of the revolute joint (i-1,i) in the point Oi-1, the angular displacement  is variable 

(positive or negative). The others three parameters 
iϕ

, ,i i ia d α  have only constant values.  The distance is the 
length of the common normal of the axes 

id

1iz −  and [2].  In a particular case of the kinematical chain, the 
axes  and  are parallels (planar kinematical chain) or perpendiculars (spatial kinematical 

chain): . 
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    In the case of the prismatic joint between the kinematical link )1i( −  and , , that means 
the angular displacement is null , while the linear displacement 

i i1i x||x −

)0( i =ϕ iais =  is variable (Fig.2). 
For , the general matrix D-H (9) has this form: 0i =ϕ
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In the particular case , the matrix (10) is reduced at a translation matrix in the plan [ ]: 0i =α 1i1i z,x −−
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For a planar kinematical chain, the general form of the homogeneous matrix results on the basis of the 
matrix (9), where  ( ) and 0i =α i1i z||z − 0ai =  (Fig.3). 
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Fig.3. Planar kinematical chain with revolute joints 

     The matrix  D-H of the planar kinematical chain (Fig.3) is: 
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where i1ii OOd −=  and . ( )i1ii x,x −∠=ϕ

4. ALGORITHM AND PROGRAM OF DYNAMIC CALCULATION. APLICATION 

The D-H method was used buy many researchers for the study of kinematics and dynamics of 
manipulator robots. It forms the basis for the following programs GESIMA (GEometric SImulation of the 
MAnipulator), SPHEMA (SPHEres Manipulator), IKIREM (Inverse KInematics REdundant Manipulator) 
which solves the inverse kinematics for a redundant manipulator by utilizing the optimum simulation of the 
system manipulator – obstacle [3]. 

Also based on the D-H method the SUMT program was developed [4] which computes the penalty 
function method for inverse kinematics. The upper mentioned programs where developed using FORTRAN 
programming language because this language also allowed the graphical representation of the robots position 
based on calculated solutions and through the communication with other commercial programs which 
contain subroutines for graphical communication. The program proposed in this paper is similar to the upper 
mentioned ones, except it’s development in the Mathematica programming language, thus because the paper 
aims to establish the dynamic equations and the Mathematica already contains specific functions for this 
purpose. 

The proposed algorithm and program for the dynamics calculation of the manipulator-robots has input 
and output data. 

The input data are: D-H parameters; the coordinates of mass center for each kinematical link; the 
inertial couples axial and centrifugal of each kinematical link; the inertial motor (actuator) couple for each 
joint; the vector of gravitational acceleration. 

The output data are: the geometric - kinematical model; the effective inertial force or couple of each 
joint; the inertia of coupling between the joints  and i j ; the centrifugal force of link  due to speed of joint i
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j ; the Coriolis force of the joint i  due to the speeds of joint j and ; the gravitational loads of each joint; 
the manipulator – robots dynamic equations.;                                                                                                                            

k

The notations used in computational program are [5]: 
  - the mass of  kinematical link; [ ]im i
  g  - the gravitational acceleration vector, with respect to the fixed-reference system; 
   - the generalized coordinate of kinematical link as function of time; [ ][ ]tiq
  - the generalized force of joint corresponding the independent parameter . [ ][ ]tiQ i [ ][ ]tiq
 
      It is consider, as example, a planar manipulator 3R (Fig. 4) actuating in the vertical plan. 
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Fig.4. Trimobil planar manipulator 3R 

 
In the particular case, the three links have equal lengths: 

POOOOO 22110 == l= . 

The numerical value is: . dm2m2,0l = =

32

]i

Also, all kinematical links are homogeneous bars, having the same density . For 
each kinematical link, the transversal section is constant, having the same diameter (3cm).   

3m/kg8000=ρ

The actuating systems are represented by the motoreductors placed in the 3 kinematical joint  

and  (Fig.4). The actuators have same inertial mechanical couple:  
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The generalized coordinates are represented through the angular displacements:  (absolute 
position) and  (relative position). 
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couples are functions of mass  for each kinematical link i: 
zzyyxx J,J

[m

∫

∫

∫

z

x

−+=

+−=

++−=

).JJJ(dm

);JJ(dmy

;)JJ(dm

yyxx2
12

yyxx2
12

yyxx2
12

J

J

zz

zz

zz

 (13)

The centrifugal couples are: 
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; ;xy xz yzJ xydm J xzdm J yzdm= = =∫ ∫ ∫ . (14)

The static couples are: 

; ;x y zS xdm S ydm S zdm= = =∫ ∫ ∫ . (15)

After program execution the following output data (dynamic equations) are obtained: 
Q[1][t] → g Cos[q[1][t]] m[1] + (2g Cos[q[1][t]] + g Cos [q[1][t]+q[2][t]]) m[2]+(2 g Cos[q[1][t] + 2 g Cos[q[1][t] 
+q[2][t]]+g Cos[q[1][t]+q[2][t]+q[3][t]]) m[3]+2(-2 m[2] Sin[q[2][t]]+m[3](-4 Sin[q[2][t]]-2 Sin[q[2][t]+ q[3][t]])) 
(q[1])’[t](q[2])’[t] + (-2m[2]Sin[q[2][t]+m[3](-4Sin[q[2] [t]]–2Sin[q[2][t]+q[3][t]]))(q[2])’[t]2+2m[3](-2Sin[q[3][t ]]–2 
Sin[q[2][t]+q[3][t]]) (q[1])’[t] (q[3])’[t]+2 m[3] (-2 Sin[q[3][t] –2 Sin[q[2][t] + q[3][t]]) (q[2])’[t] (q[3])’[t] + m[3] (-2 
Sin[q[3][t] – 2 Sin[q[2][t] + q[3][t]]) (q[3])’[t]2 +Jm1 (q[1])”[t] + (m[1]+(5+4Cos[q[2][t]])m[2] + (9+8 
Cos[q[2][t]+4Cos[q[3][t]]+4Cos[q[2][t] + q[3][t]]) m[3]) (q[1])”[t] +((1+2 Cos[q[2][t]]) m[2] + (5 + 4 Cos[q[2][t]] 
+4Cos[q[3][t]]+2 Cos[q[2][t]+q[3][t]]) m[3]) (q[2])”[t] + (1+2Cos[q[3][t]]+2Cos[q[2][t]+ q[3][t]]) m[3] (q[3])”[t] 
 
Q[2][t] → g Cos[q[1][t] + q[2][t]]m[2] + (2g Cos[q[1][t]    +q[2][t]+g Cos[q[1][t]+q[2][t]+q[3][t]]) m[3] + (2m[2]  
Sin[q[2][t] + m[3](4Sin[q[2][t]] +2Sin[q[2][t] +q[3][t]])) (q[1])”[t]2- 4m[3] Sin[q[3][t]](q[1])”[t] (q[3])’[t] - 4m[3] 
Sin[q[3][t]] (q[2])’[t] (q[3])’[t] - 2m[3]Sin[q[3][t]] (q[3])’ [t]2+ ((1+2Cos[q[2][t]]) m[2] + (5+4Cos[q[2][t]] + 4Cos 
[q[3][t]] + 2Cos[q[2][t] + q[3][t]]) + m[3]) (q[1])”[t] + Jm2 (q[2])”[t] + (m[2] + (5+4Cos[q[3][t]]) m[3]) (q[2])”[t] + 
(1+2Cos[q[3][t]]) m[3] (q[3])”[t] 
 
Q[3][t] → g Cos[q[1][t]+q[2][t]+q[3][t]] m[3] + m[3] (2Sin[q[3][t]] + 2Sin[q[2][t] + q[3][t]]) (q[1])’[t]2 + 
4m[3]Sin[q[3][t]](q[1])’[t] (q[2])’[t] + 2m[3] Sin[q[3][t]]  (q[2])’[t]2 + (1+2Cos[q[3][t]] + 2Cos[q[2][t] + q[3][t]]) + 

[3] (q[1])”[t] + (1+2Cos[q[3][t]]) m[3] (q[2])”[t] +   Jm3  (q[3])”[t] + m[3] (q[3] (q[3])”[t] m  

5. CONCLUSIONS 

The program was developed in Mathematica, which is an advanced mathematic computations 
programming language. By using Mathematica the coding of needed subroutines is not necessary for 
equations and systems of equations solving. These issues represent a drawback in older/classical 
programming languages like FORTRAN, Pascal, C+ because of prolonged computational periods needed. 
The efficiency of the program proposed through this paper can be observed especially in the modelling of 
inverse geometry of redundant structures, which needs non-linear equations systems solving through iterative 
methods. Another efficiency feature of this program can be observed in the simulation of manipulator robots 
through the integration of differential non-homogenous equations with given initial parameters. 

REFERENCES 

1. FILIP V., NEAGU A. - A Symbolic Computational Method for Dynamic Simulation of Multibody Systems, Proceeding of 
International Conference on Innovative Computing, Information and Control, Volume I, China, pp.130-133, 2006. 

2. MANFRED L. HUSTY , MARTIN PFURNER, HANS-PETER SCHROCKER - A new and efficient algorithm for the inverse 
kinematics of a general serial 6R manipulator, Mechanism and Machine Theory 42, Elsevier, pp. 66–81, 2007 

3. MITSI, S., BOUZAKIS K. D., - Simulation of redundant manipulators for collision avoidance in manufacturing and assembly 
environments, Mechanism and Machine Theory  Vol. 28, No. 1, Elsevier, pp. 13 -21, 1993. 

4. MITSI, S., BOUZAKIS K. D., MANSOUR G., - Optimization of robot links motion in inverse kinematics solution considering 
collision avoidance and joint limits, Mechanism and Machine Theory  Vol. 30, No. 5, Elsevier, pp. 653 - 663, 1995. 

5. PAUL R., - Robot Manipulators - Mathematics, Programming and Control, MIT Press Cambridge, 1981. 
6. ZAHARIA S., FILIP V. - A Symbolic Computational Method for a Dynamic Model of Robot Manipulators, Proceeding of 2nd 

International Conference on Engineering Computational Technology Leuven, Belgium, pp. 51-56,  2000. 

Received July 09, 2008 


	Received July 09, 2008

