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This paper is a research in the frame of the Grant CEx 189/2006, “Water and thermic management for 
PEM fuel cells”. We study here the flow in the “Gas Diffusion Layer” of a PEM fuel cell. In this 
region, the dynamic of fluids is governed by capillary and diffusion phenomenon. The diffusion-
convection process is studied, involving the oxygen and water vapors. Our model is similar with the 
Hele-Shaw model, which describes the displacement of two immiscible fluids with different 
viscosities between two parallel plates at a small distance (see [19]). The concentrations of the fluids 
are invertible in terms of the viscosities. If the displacing fluid is less viscous, the interface between 
the fluids is unstable. We consider a diffusion region between the two fluids, where the viscosity is a 
parameter. We study the linear stability of a basic solution, in terms of the diffusion coefficient. We 
get an upper estimate of the growth constant of perturbation. A large enough diffusion coefficient 
gives us a significant improvement of the flow stability. 
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1.  INTRODUCTION 

The water transport in a PEM fuel cells (PEMFC) is governed by the mass transfer and diffusion 
appearing in the “Gas Diffusion Layer” (GDL) region. Some previous and interesting results are given in [3], 
[4], [5], [13]. A capillary pressure exists on the interface gas-liquid and the surface tension is involved. In 
[3], the capillary pressure is given by Genuchten’ s function, described also in [14]. The diffusion process in 
characterized by the diffusion coefficient η . In [4] are given some methods to find η . 

At the Workshop “Modeling and Simulation of PEM Fuel Cells”, Freiburg Universität, 2006, are 
studied some diffusion and transport phenomena in PEMFC. In [15] is studied the transport in the catalize 
layer; in [17] is studied the bi-phasic flow in complex porous media; in [1] are estimated the effective 
diffusivity coefficients. The homogenization method is used in [18] to obtain a reduced model of GDL. A 
triphazic model is studied in [2]. All these papers are related to our approach. 

Some qualitative and numerical aspects, related to the transfer processes PEM, are studied in [6]-[7] 
and [8]-[12]. 

In this paper, we consider a quasi-one dimensional model for the GDL. The length is much longer 
compared with the thickness. In [13], at the ends are used periodicity conditions; then in fact our medium can 
be considered of infinite length in the displacement direction. On this way, we can use the Hele-Shaw model. 
If displacing fluid (gas) is less viscous, the interface with the displaced fluid (water) is unstable. Between the 
two fluids we consider a “Transition Zone” (TZ), where the viscosity is an increasing function. We have two 
interfaces, with two surfaces tensions; here we have small jumps of the viscosities. In TZ we allow a 
diffusion process. A basic steady solution, with straight initial interfaces, is considered. We study the linear 
stability of this basic solution. We obtain a qualitative result concerning the improvement of the stability and 
an upper estimate of the growth constant. A large enough diffusion coefficient η gives us an improved 
stability.    
 We thanks to professor  G.. Pascha, from the Institute of Mathematics  “Simion Stoilow”, for useful 
diuscutions concerning  the  diffusion model in the Gas Diffusion Layer. 
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 2   THE HELE-SHAW MODEL 

In [16] is considered the flow of a Stokes fluid between two parallel plates at a small distance δ, in the 
plane xOy; Oz is orthogonal on the plane. In the following, (u,v,w), p are the velocity and the pressure. In our 
case w = 0, then p is not depending on z. The x,y derivatives of the velocity are neglected, compared with the 
z derivative. Therefore we get the system 
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where  μ is the viscosity. A no-slip condition is imposed at z=0,   z= δ, then 
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The above equation is obtained by using Taylor expansion of second order for u, v. The relation (A1) is 
quite similar with the Darcy law, which governs the flow in a porous two-dimensional medium, with the 
permeability . The filtration velocity is given by 12/2δ u and v . We emphasize that only the permeability 
and velocity are “fictive”, while the viscosity in (A1) is the same as in the Darcy law. 

We conclude that, in thin plane regions (in our case the domain between two plates), the flow of a 
viscous fluid is governed, with a good approximation, by the Darcy law in a fictive porous medium. 

The fuel cells are “composed” by some thin plane regions, where the flow and transfer processes are 
performed. The above considerations allow us to approximate the flow in these regions by the Darcy law, in 
the frame of the Hele-Shaw model. 

3. THE MATHEMATIC MODEL OF DIFFUSION IN GDL 

 In the fixed plane , we consider the flow of three fluids in a homogeneous porous medium, using 
the Hele-Shaw model. The medium is saturated with following three fluids: oxygen-vapors, a mixture 
formed by oxygen-vapors and water, and the third part filled with water. We have three viscosities: oxygen 
vapors with constant viscosity μ1, the mixture with variable viscosity μ, and water with constant viscosity μ2. 
All regions are moving by oxygen velocity U far upstream. We have also two interfaces, denoted by Γi(x1). 

Oyx1

The flow is governed by the Darcy law, the continuity equation for velocities and a “conservation” law 
for the viscosities in the mixture (here the viscosities replaced the concentrations, as we mentioned above). 

Let (u, v) and  p be the velocity and the pressure. The temperature is considered constant and we study 
only the hydrodynamical aspects. The case of a variable temperature was considered in a previous study, 
related to the same Grant. 

We neglect the adsorption and dispersion phenomena. Therefore the flow is governed by the following 
equations:   
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On Γi(x1) we use the Laplace law: the pressure jump is balanced by the surface tension multiplied with 
the interface's curvature. The normal component of the velocity on the interfaces Γi(x1) is continuous. Far 
from Γi(x1) we have the condition 
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The following basic solution (6)--(10) exists for the problem (1)--(5): 
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The viscosity in the mixture is a linear function in terms of (x1-Ut). We have two straight material interfaces, 
then the following condition holds: 

)(on  continous is 1xP iΓ . (10)
Our task is to study the linear stability of the basic solution (6)--(10). 

4. THE STABILITY SYSTEM 

  We consider the perturbations u', v', p', μ' of the basic velocity, pressure and viscosity and get the 
system 
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with the following boundary conditions 
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We use the mobile coordinate system :),( τx  
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However, in the following, τ is also denoted by t. In the mobile system, the perturbations are governed 
by the problem 
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The parameters of the problem are . , , , ,0 bal ημ  The basic viscosity is depending on , and is 
continuous on , where the surface tension is zero. 

ba  ,
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Here μ depends only on x, but the perturbation μ' is function of . The proof is as following. The 

problem (12)--(15) is linear. The first step is to consider the perturbation of basic velocity  
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where α is the wave number in direction y, orthogonal on the displacing direction Ox; σ is the growth 
constant (in time) of the perturbations. From (12)--(14) we get 
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Cross differentiating the pressure we obtain 
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The above relations give us 
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therefore the second order partial derivatives of  μ'  are given by: 
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We use (15i) and get the following stability system, where x ∈  (-l, 0): 
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In the following, we derive the boundary conditions for (18)--(19). The perturbed interfaces are 

described by the relations 
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therefore the limit values of the pressure on the interface x=0 can be approximated by: 
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Similar relations are obtained for limit values of the pressure on x=-l. We use the above relations to 
obtain the boundary conditions for stability system (18)--(19), as follows: 
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a) Boundary conditions for f. The viscosity is continuous on x=-l and the surface tension is zero. On x=0 we 
have the viscosity jump [ ])0(2 μμ −  and the surface tension T. On x=-l, x=0, we consider the first 
approximation of Laplace's law  
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We differentiate the pressure and get the equation of f out of the mixture: 
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The perturbations must be zero far from the interfaces (that means u'=0), therefore the above equation gives 
us the expression of f out of the mixture:  
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b) Boundary conditions for h. We use (11c) and get: 
      (0) ( ) 0             h h l= − =  (26)

5. THE APPROXIMATION PROCEDURE 

We have to estimate the growth constant σ appearing in (18)--(19) with boundary conditions (22)--(26). 
The system (18)--(19) can be reduced to a single fourth order equation for the eigenfunction f. But, as we can 
see above, we have only two boundary conditions for f. In this situation, it is more useful to use two 
equations of second order, both with two boundary conditions, but coupled. In following sections we obtain 
an upper estimate for  σ, by using this procedure. In this section we derive an approximated form of our 
stability system. 

Consider  points in the segment   [-l, 0]: )1( −M 00121 =<<<<<−= −− xxxxlx MMM …  with 
the constant discretization step For the lateral derivatives appearing in (22)-(23) we use the 
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The values 0 1 2 1, , , , Mf f f f −… ; 1 2 1, , , Mh h h −…  (the values of functions in the considered interior points) are 
unknown and we use the following approximations 
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Two kinds of indices will be used: 
),1(,,2,1,    );1(,,2,1,0, −=−= MmiMkj ……   

then (27)--(29) give us the discretized form of our problem: 
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We get only one equation for f, by using (31)-(32): 
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From (31) we obtain . We replace  with the expression in the last term of the right 
hand side of the above formula. The final form of our discretized system is (recall 
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The above system contains only the eigenfunction f. Then the used approximation is useful for 
avoiding a fourth order differential equation for f, which appears in the exact form. There are (M-1) 
equations and M unknowns . The product BA is appearing, therefore the solution is not obvious. The 
difficulty is given by the matrix A appearing in (38). This matrix is not quadratic, therefore not invertible. 

kf

The growth constant σ  and the eigenvalues λ are complex numbers. We use the notation 
.1 ,  ;  , 2121 σλλσλλλσσσ =∈+=+= R;iii i  
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In the following,  we give an upper estimate of the real part of the growth constant, denoted by 1σ  . 
Consider the relation (38) in the equivalent form 
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Here ηα  , , B are real , then we have the inequality 
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In the above equations (42)--(44) we use the obvious relations 
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The last relation and the estimates (42)--(44) give us the final upper bound for 1σ : 
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where yi are given by the definition (40). 
 Remark 1. The procedure used in this section is quite similar with the Gerschgorin's localization 
result for the eigenvalues of the matrix equation xAx λ= . However, in our case, the new term || ii yf is 
appearing 
  Remark 2. The estimate (45) allows us the following conclusion: a large enough diffusion 
coefficient can improve the flow stability. This means that the growth constant becomes negative for large 
diffusion coefficient η . 
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