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The Piling-up Lemma for binary independent random variables is a very useful tool in linear 
cryptanalysis of block ciphers and in cryptanalysis of stream ciphers, especially when fast correlation 
attacks are used. Also, it was shown that, for some block ciphers, the sequence of differences at each 
round output forms a Markov chain. We give here a corresponding Piling-up lemma for Markov chains. 
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1. INTRODUCTION 

According to The Free Encyclopedia “Wikipedia” [1], the Piling-up Lemma was introduced by Mitsuru 
Matsui [2] in 1993 as an analytical tool for linear cryptanalysis of block ciphers. 

But, without a name, this lemma was used before in cryptanalysis of stream ciphers. For example, 
Kencheng Zeng and Minqiang Huang [3, p.470] used it in 1988; also, Vladimir Chepyzhov and Ben Smeets        
[4, p.179] used this lemma in 1991. 

After this lemma was named by Mitsuru Matsui, it was used as “Piling-up Lemma” both in cryptanalysis 
of stream ciphers and in cryptanalysis of block ciphers. 

In linear cryptanalysis attack, several assumptions are made by the attacker. One of them is that the 
threefold sums used in the attack are independent, thus allowing to apply the Piling-up Lemma to them. The 
trick is to find combinations of input and output values that have probabilities zero or one. The closer the 
approximation  to zero or one, the more helpful the approximation  in linear cryptanalysis.This lemma only 
holds for independent random variables. However, in practice, the binary variables are not independent, as is 
assumed in the derivation of the Piling-up Lemma. This consideration has to be kept in mind when applying 
the lemma. 

In order to estimate the probability of a linear approximation using the Piling-up Lemma, the 
approximation is written as a chain of connected linear approximations, each spanning a small part of the 
cipher. Such a chain is called a linear characteristic. Assuming that the biases of these partial approximations 
are statistically independent and easy to compute, the total bias can be computed using the Piling-up Lemma. 

The first stage in linear cryptanalysis consists of finding useful approximations. Although the most 
biased linear approximation can easily be found in an exhaustive way for a simple component such as an S-
box, a number of practical problems arise when trying to extrapolate this method to full-size ciphers. The first 
problem concerns the computation of the probability of a linear approximation. In principle, this would require 
the cryptanalyst to run through all possible combinations of plaintexts and keys, which is clearly infeasible for 
any practical cipher. The solution to this problem is to make a number of assumptions and to approximate the 
probability using the so-called Piling-up Lemma. 

Let us now present this lemma. 
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Although the Piling-up Lemma produces very good estimations in many practical cases, even when the 
approximations are not strictly independent, it should be stressed that unexpected effects can occur when the 
independence assumption is not fulfilled. In general, the actual bias in these cases can be both much smaller 
and much larger than predicted by the lemma; it is not an automatic cryptanalysis formula. 

One of the best attacks against block ciphers is the well known differential attack, introduced by Biham 
and Shamir [5]. Lai, Massey and Murphy [6] introduced the concept of “Markov ciphers” for iterated block 
ciphers because of its significance in differential cryptanalysis. They showed that if an iterated block cipher is 
Markov and its round subkeys are independent, then the sequence of differences at each round output is a 
Markov chain. 

So, we shall give a Piling-up Lemma for Markov chains. 

2. PILING-UP LEMMA FOR MARKOV CHAINS 

Our purpose is to find the expression of  when  is a homogenous Markov chain 

with initial distribution  and transition matrix , where 
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Based on the fact that the proof of the Piling-up Lemma for binary independent random variables can be 
done by using a recurrence relation, we look for such a relation for Markov chains, too. 

To this purpose, we divide the  possible realizations of the sequence  into 8 disjoint 
classes, as a function of the value of the first bit, the value of the last bit, and the parity of the number of  "1"s 
in the sequence. 

m2 mXXX ,...,, 21

For  each class contains  sequences. Let us denote these classes by , , 
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    Lemma 2.1 (of the recurrence relations). We have  
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Proof. The  elements in class  are obtained from the  elements of class  and the 

elements of class  by adding a "0" and so on. 
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Now, we can give 
Theorem 2.2 (Piling-up lemma for Markov chains). If  is a binary homogenous Markov chain 

with  and transition matrix , then 
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Proof. Equation (1) can be written in matrix form, one of them being 
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Let us denote by  the sum of the probabilities of the sequences in the class . We obviously have rmb , rmC ,
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The classes which contain sequences having an even number of “1”s are , (the first bit of these 

sequences being “0”) and , (the first bit of these sequences being “1”). So, we have 

 and the proof is complete. 
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Finding the powers of the matrix Z is not so easy; these powers depend on the relation between  and 
 while many situations must be considered. We calculated the powers of the matrix Z using the techniques 

described in [7]. 
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Without providing the details of the calculations, we present below the most relevant results. 
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