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  New duality results for a semiparametric duality model are given for a fractional programming 
problem involving n-set functions. 
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1. INTRODUCTION AND PRELIMINARIES 

We consider the frame of optimization theory for n-set [2,5,8]. For formulating and proving various 
duality results, we use the class of generalized convex n-set functions called (F,b,φ,ρ, θ)-univex functions, 
which were defined in Zalmai [11]. Until now, F was assumed to be a sublinear function in the third 
argument. In our approach, we suppose that F is a convex function in the third argument, as in Preda et al. 
[7,8] and Bătătorescu et al. [1]. 

Let ( , ,X A μ  be a finite atomless measure space with ( )1 , ,L X A μ  separable, and let d be the 
pseudometric on An defined by 
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where 1 1  ( ,···, ),    ( ,···, )  n nR R R S S S A= = ⁿ∈ )and Δ stands for symmetric difference. Thus, is a 
pseudometric space. 
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    For ( )1 , ,h L X A μ∈  and T  with indicator (characteristic) functionA∈ ( , ,T L X A )χ μ∞∈ , the integral 

hdμ∫  is denoted by , Th χ . 

 Definition 1.1. [4] A function  is said to be differentiable at S*∈A if there exist :f A → \
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Definition 1.2. [2]  A function  is said to have a partial derivative at S*=(S1
*,..., Sn

*) ∈Aⁿ 
with respect to its i-th argument if the function f(Si) =  has derivative Df( ),  

: ng A → \
* * *
1 1 1( , , , , , , )i i i ng S S S S S− +… " * *

iS

{1, 2,..., }.i n n∈ =   
We define and write  **D ( ) D ( )ii g S f S= * *

1D ( ) (D ( ), , D ( )).ng S g S g S= … *

 Definition 1.3. [2] A function g: Aⁿ → ℝ  is said to be differentiable at  if there exist Dg( ) and 
Wg : Aⁿ × Aⁿ→ ℝ  such that 
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where   is  for all S ∈ Aⁿ. *( , )GW S S *( ( , ))o d S S

 Let  be the q-dimensional Euclidean space and q\
q
+\   its positive orthant, i.e. 

( )1{ , , : 0, 1, ,q q
q j }.x x x x j q+ = = ∈ ≥ =\ \… …  

For   any   vectors  ( ) ( )1 1, ,   and   , , n
nx x x y y y= = \… … n ∈ ,  we   put   x ≦ y    iff    xi  ≦ yi,   

for   each  i ∈ n ={1,2,...,n}; x ≤ y iff  x ≦ y, with  x ≠ y; x < y iff xi < yi, for each i  ∈ n = {1,2,...n}; x 
≰ y means the negation of  x ≤ y. Clearly, nx +∈\  iff  x ≧0. 

In this paper, we consider the multiobjective fractional subset programming problem 
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where Aⁿ is the n-fold product of the σ-algebra A of subsets of a given set X,  , ,    :    if A → \ⁿ :    ig A → \ⁿ
{ } 1, 2,..., ,  i p p∈ = and :    ,   jh A j q→ ∈\ⁿ , such that ( ) 0ig S >  for each   i p∈ and all  S ∈P . We 

denoted by   the set of all feasible solutions to (P).  ( ) { :  0,  jS A h S j q= ∈ ∈P ⁿ }

Definition 1.4. A feasible solution  0S ∈P   is said to be an efficient solution to (P)  if there exists no 
other feasible solution  such that  S ∈P
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    In the following we consider F: Aⁿ × Aⁿ × ℝ → ℝ  and a differentiable function . The 
definitions below unify the concepts of 

 :   f A → \ⁿ
( ),F ρ − convexity, ( ,F )ρ − pseudoconvexity, 

( ),F ρ − quasiconvexity from Preda [6] and univexity, pseudounivexity, quasiunivexity from Mishra [3]. 

    Let b : Aⁿ × Aⁿ → , θ : Aⁿ × Aⁿ → Aⁿ × Aⁿ such that S ≠  ⇒ θ(S, ) ≠ (0,0), φ : ℝ → ℝ , and 
a real number ρ. 

+\
*S *S

    Definition 1.5. [11] A function f is said to be (strictly) ( ), , , ,F b ϕ ρ θ − univex at  if *S

( ) ( ) ( ) ( )( )* * * *( ( ))  ( , ; , D ( )) ² , *F S F S F S S b S S F S d S Sϕ ρ− > + θ  

for each . nS A∈
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Definition 1.6. [11] A function f is said to be (strictly) (F,b,φ,ρ,θ)-pseudounivex at  if *S

( ) ( )( ) ( ) ( )* * * * *( , ;  , D ( )) ² ,   ( f ( ))  0F S S b S S f S d S S f S Sρ θ ϕ− ⇒ − >    

for each , . nS A∈ *S S≠

    Definition 1.7. [11] A function f is said to be (prestrictly) (F,b,φ,ρ,θ)-quasiunivex at  if *S

( ) ( ) ( ) ( )( )* * * *( ( ))  0 ( , ; , D ( )) ² ,f S f S F S S b S S f S d S Sϕ ρ− < ≤ ⇒ ≤ − *θ  

for each . nS A∈
  For problem (P), Zalmai [10] gave the necessary conditions for efficiency below.  

           Theorem 1.1. Assume that ,  ,  i if g i p∈ , and ,  jh j q∈ , are differentiable at and that for 
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for all ,  S A∈ ⁿ * *( ) 0,j jv h S j q= ∈ . 

We shall refer to an efficient solution   to (P) satisfying the first two conditions in Theorem 1.1 for 
some , 

*S
ˆ

iS i p∈ , as a normal efficient solution. 

2.THE DUALITY MODEL AND DUALITY RESULTS 

 In this section we present a general duality model for (P). Here we use two partitions of the index sets 
q and p, respectively. 

 Let  { }0 1I , I ,..., Ik  be a partition of the index set p and { }0 1J , J ,..., Jm  a partition of the index set q such 
that K={0,1,...,k} M={0,1,...,m}, and, for fixed S, u and v, and  let the function 

be defined by 
⊂

( ) :  v A → \ⁿ
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    We associate with problem (P) the dual problem 



 Ioan M. STANCU-MINASIAN , Vasile PREDA,  Miruna BELDIMAN, Andreea Mădălina STANCU 4  
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In the following we consider a convex function ( ) ( )1, ; : , ,  F S T L X A μ⋅ → \ and 
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         The result below establishes several versions of weak duality related to problems (P) and (D). 
         Theorem 2.1 (Weak duality). Let S and (T,u,v) be arbitrary feasible solutions to (P) and (D), 
respectively, and assume that any one of the following sets of hypotheses is satisfied: 
    (a) (i)  is strictly ((2 , , ,tk T uΩ ⋅ )v ), , , ,t tF b ϕ ρ θ − pseudounivex at T, tϕ  is increasing, and ( )0 0tϕ =  for 
each t ; K∈
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    (c) (i)  is prestrictly (2 , , ,tk T uΩ ⋅ )v ( ), , , ,t tF b ϕ ρ θ − quasiunivex at T, tϕ  is increasing, and ( )0 0tϕ =  
for each ; Kt∈
          (ii)  is (( ) (2 ,tm k v− Λ ⋅ ) ), , , ,t tF b ϕ ρ θ − quasiunivex at T, tϕ   is increasing, and ( )0 0tϕ =   for each 
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    (d) (i)  is strictly (13 , , ,tk T uΩ ⋅ )v ( ), , , ,t tF b ϕ ρ θ − pseudounivex at T for each 1  K ,t ∈ tϕ  is increasing, 

and ( )0 0 =tϕ for each , 1Kt∈ ( )23 , , ,tk T uΩ ⋅ v  is prestrictly ( ), , , ,t tF b ϕ ρ θ − quasiunivex at T for each 

 2K ,t ∈ tϕ  is increasing, and ( )0 0 =tϕ for each , where { } is a partition of  K, with 2Kt∈ 1 2K ,K 1K ≠ ∅ , 
, , ; 2
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K ≠ ∅ 1 1| K |k = k =2 2| K |

( ) (3 ,tm k v− Λ ⋅ ) ), , , ,t tF b ϕ ρ θ −  quasiunivex at T, tϕ  is increasing, and ( )0 0tϕ =   for each 
; M \ Kt∈
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Then 

        Theorem 2.2. (Strong duality). Let 
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S ∈P  be a normal efficient solution to (P), let 
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F S S f S f S χ χ= − for any differentiable function :f A → \ⁿ  and ,S A
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∑ ∈ ⁿ and 

assume that any one of the sets of hypotheses specified in Theorem 2.1  (D). 

 [10], we can also obtain a strict 
converse duality result. 
    For a detalied presentation of these results, the reader is referred to [9]. 

y by that of convexity. Similar results can be obtained for the other dual models from [10]. Also, 
most all results of this type present in the literature can be extended to the case where F is not necessarily 

sublinear. 
 

. holds for all feasible solutions to
Then there exist *u U∈ and * qv +∈\  such that * * *( , , )S u v  is an efficient solution of (D) and 

* * * *( ) ( , , ).S S u vδΦ =  
        Remark 2.1. Using Theorems 2.1 and 2.2, and tehniques from [5] and

3. CONCLUSIONS 

We have obtained duality results for a dual model of Zalmai [10], replacing the assumption of 
blinearitsu

al
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