ON ZALMAI’S SEMIPARAMETRIC DUALITY MODEL FOR MULTIOBJECTIVE FRACTIONAL PROGRAMMING WITH n-SET FUNCTIONS

Ioan M. STANCU-MINASIAN*, Vasile PREDA**, Miruna BELDIMAN*, Andreea Mădălina STANCU*

> * Institute of Mathematical Statistics and Applied Mathematics of the Romanian Academy, Calea 13 Septembrie nr. 13, 050711 , Bucharest 5, Romania, E-mail: stancum@csm. ro
> ** University of Bucharest, Faculty of Mathematics and Computer Sciences, Str. Academiei 14, 010014, Bucharest, Romania

Abstract

New duality results for a semiparametric duality model are given for a fractional programming problem involving n-set functions.

Key words: multiobjective programming, n-set function, duality, generalized convexity.

1. INTRODUCTION AND PRELIMINARIES

We consider the frame of optimization theory for n-set [2,5,8]. For formulating and proving various duality results, we use the class of generalized convex n-set functions called ($F, b, \varphi, \rho, \theta$)-univex functions, which were defined in Zalmai [11]. Until now, F was assumed to be a sublinear function in the third argument. In our approach, we suppose that F is a convex function in the third argument, as in Preda et al. [7,8] and Bătătorescu et al. [1].

Let (X, A, μ) be a finite atomless measure space with $L_{1}(X, A, \mu)$ separable, and let d be the pseudometric on A^{n} defined by

$$
d(R, S):=\left[\sum_{k=1}^{n} \mu^{2}\left(R_{k} \Delta S_{k}\right)\right]^{1 / 2}
$$

where $R=\left(R_{1}, \cdots, R_{n}\right), S=\left(S_{1}, \cdots, S_{n}\right) \in A^{\mathrm{n}}$ and Δ stands for symmetric difference. Thus, $\left(A^{\mathrm{n}}, d\right)$ is a pseudometric space.

For $h \in L_{1}(X, A, \mu)$ and $T \in A$ with indicator (characteristic) function $\chi_{T} \in L_{\infty}(X, A, \mu)$, the integral $\int h d \mu$ is denoted by $\left\langle h, \chi_{T}\right\rangle$.

Definition 1.1. [4] A function $f: A \rightarrow \mathbb{R}$ is said to be differentiable at $S^{*} \in A$ if there exist $\mathrm{D} f\left(S^{*}\right) \in L_{1}(X, A, \mu)$, called the derivative of f at S^{*}, and $V_{f}: A \times A \rightarrow \mathbb{R}$ such that

$$
f(S)=F\left(S^{*}\right)+\left\langle\mathrm{D} f\left(S^{*}\right), \chi_{S}-\chi_{S^{*}}\right\rangle+V_{f}\left(S, S^{*}\right)
$$

for each $S \in A$, where $V_{f}\left(S, S^{*}\right)$ is $o\left(d\left(S, S^{*}\right)\right)$, that is,

$$
\lim _{d\left(S, S^{0}\right) \rightarrow 0} \frac{V_{f}\left(S, S^{*}\right)}{d\left(S, S^{*}\right)}=0 .
$$

Definition 1.2. [2] A function $g: A^{n} \rightarrow \mathbb{R}$ is said to have a partial derivative at $S^{*}=\left(S_{l}{ }^{*}, \ldots, S_{n}{ }^{*}\right) \in A^{n}$ with respect to its i-th argument if the function $f\left(S_{i}\right)=g\left(S_{1}^{*}, \ldots, S_{i-1}^{*}, S_{i}, S_{i+1}^{*}, \cdots, S_{n}^{*}\right)$ has derivative $\operatorname{Df}\left(S_{i}^{*}\right)$, $i \in \underline{n}=\{1,2, \ldots, n\}$.

We define $\mathrm{D}_{i} g\left(S^{*}\right)=\mathrm{D} f\left(S_{i}^{*}\right)$ and write $\mathrm{D} g\left(S^{*}\right)=\left(\mathrm{D}_{1} g\left(S^{*}\right), \ldots, \mathrm{D}_{n} g\left(S^{*}\right)\right)$.
Definition 1.3. [2] A function $g: A^{\mathrm{n}} \rightarrow \mathbb{R}$ is said to be differentiable at S^{*} if there exist $\mathrm{Dg}\left(S^{*}\right)$ and $W_{g}: A^{n} \times A^{n} \rightarrow \mathbb{R}$ such that

$$
G(S)=G\left(S^{*}\right)+\sum_{i=1}^{n}\left\langle\mathrm{D}_{i} G\left(S^{*}\right), \chi_{S_{i}}-\chi_{S_{i}}\right\rangle+W_{G}\left(S, S^{*}\right),
$$

where $W_{G}\left(S, S^{*}\right)$ is o($\left(d\left(S, S^{*}\right)\right)$ for all $S \in A^{n}$.
Let \mathbb{R}^{q} be the q-dimensional Euclidean space and \mathbb{R}_{+}^{q} its positive orthant, i.e.

$$
\mathbb{R}_{+}^{q}=\left\{x=\left(x_{1}, \ldots, x_{q}\right) \in \mathbb{R}^{q}: x_{j} \geq 0, j=1, \ldots, q\right\}
$$

For any vectors $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$, we put $x \leqq y$ iff $x_{\mathrm{i}} \leqq \mathrm{y}_{\mathrm{i}}$, for each $i \in \underline{n}=\{1,2, \ldots, n\} ; x \leq y$ iff $x \leqq y$, with $x \neq y ; x<y$ iff $x_{\mathrm{i}}<y_{\mathrm{i}}$, for each $i \in n=\{1,2, \ldots n\} ; x$ $* y$ means the negation of $x \leq y$. Clearly, $x \in \mathbb{R}_{+}^{n}$ iff $x \geqq 0$.

In this paper, we consider the multiobjective fractional subset programming problem

$$
\begin{equation*}
\min \Phi(S)=\left(\frac{f_{1}(S)}{g_{1}(S)}, \frac{f_{2}(S)}{g_{2}(S)}, \cdots, \frac{f_{p}(S)}{g_{p}(S)}\right) \tag{P}
\end{equation*}
$$

subject to

$$
h_{j}(S) \leqq 0, \quad j \in \underline{q}=\{1,2, \ldots, q\}, \quad S \in A^{n},
$$

where A^{n} is the n-fold product of the σ-algebra A of subsets of a given set $X, f_{i}: A^{n} \rightarrow \mathbb{R}, g_{i}: A^{n} \rightarrow \mathbb{R}$, $i \in \underline{p}=\{1,2, \ldots, p\}$, and $h_{j}: A^{n} \rightarrow \mathbb{R}, j \in \underline{q}$, such that $g_{i}(S)>0$ for each $i \in \underline{p}$ and all $S \in \mathcal{P}$. We denoted by $\mathcal{P}=\left\{S \in A^{n}: h_{j}(S) \leqq 0, j \in q\right\}$ the set of all feasible solutions to (P).

Definition 1.4. A feasible solution $S^{0} \in \mathcal{P}$ is said to be an efficient solution to (P) if there exists no other feasible solution $S \in \mathcal{P}$ such that

$$
\left(\frac{f_{1}(S)}{g_{1}(S)}, \frac{f_{2}(S)}{g_{2}(S)}, \cdots, \frac{f_{p}(S)}{g_{p}(S)}\right) \leq\left(\frac{f_{1}\left(S^{0}\right)}{g_{1}\left(S^{0}\right)}, \frac{f_{2}\left(S^{0}\right)}{g_{2}\left(S^{0}\right)}, \cdots, \frac{f_{p}\left(S^{0}\right)}{g_{p}\left(S^{0}\right)}\right)
$$

In the following we consider $F: A^{n} \times A^{n} \times \mathbb{R} \rightarrow \mathbb{R}$ and a differentiable function $f: A^{n} \rightarrow \mathbb{R}$. The definitions below unify the concepts of (F, ρ)-convexity, (F, ρ)-pseudoconvexity, (F, ρ) - quasiconvexity from Preda [6] and univexity, pseudounivexity, quasiunivexity from Mishra [3].

Let $b: A^{n} \times A^{n} \rightarrow \mathbb{R}_{+}, \theta: A^{n} \times A^{n} \rightarrow A^{n} \times A^{n}$ such that $S \neq S^{*} \Rightarrow \theta\left(S, S^{*}\right) \neq(0,0), \varphi: \mathbb{R} \rightarrow \mathbb{R}$, and a real number ρ.

Definition 1.5. [11] A function fis said to be (strictly) $(F, b, \varphi, \rho, \theta)-$ univex at S^{*} if

$$
\varphi\left(F(S)-F\left(S^{*}\right)\right)(>) \geqq F\left(S, S^{*} ; b\left(S, S^{*}\right) \mathrm{D} F\left(S^{*}\right)\right)+\rho d^{2}\left(\theta\left(S, S^{*}\right)\right)
$$

for each $S \in A^{n}$.

Definition 1.6. [11] A function fis said to be (strictly) $(F, b, \varphi, \rho, \theta)$-pseudounivex at S^{*} if

$$
F\left(S, S^{*} ; b\left(S, S^{*}\right) \mathrm{D} f\left(S^{*}\right)\right) \geqq-\rho d^{2}\left(\theta\left(S, S^{*}\right)\right) \Rightarrow \varphi\left(f(S)-\mathrm{f}\left(S^{*}\right)\right)(>) \geqq 0
$$

for each $S \in A^{n}, S \neq S^{*}$.
Definition 1.7. [11] A function fis said to be (prestrictly) $(F, b, \varphi, \rho, \theta)$-quasiunivex at S^{*} if

$$
\varphi\left(f(S)-f\left(S^{*}\right)\right)(<) \leqq 0 \Rightarrow F\left(S, S^{*} ; b\left(S, S^{*}\right) \mathrm{D} f\left(S^{*}\right)\right) \leqq-\rho d^{2}\left(\theta\left(S, S^{*}\right)\right)
$$

for each $S \in A^{n}$.
For problem (P), Zalmai [10] gave the necessary conditions for efficiency below.
Theorem 1.1. Assume that $f_{i}, g_{i}, i \in \underline{p}$, and $h_{j}, j \in \underline{q}$, are differentiable at $S^{*} \in A^{n}$, and that for each $i \in \underline{p}$ there exists $\hat{S}_{i} \in A^{n}$, such that

$$
h_{j}\left(S^{*}\right)+\sum_{k=1}^{n}\left\langle\mathrm{D}_{k} h_{j}\left(S^{*}\right), \chi_{\hat{S}_{k}}-\chi_{S_{k}^{*}}\right\rangle<0, j \in \underline{q}
$$

and for each $l \in \underline{p} \backslash\{i\}$ we have

$$
\sum_{k=1}^{n}\left\langle g_{i}\left(S^{*}\right) \mathrm{D}_{k} f_{l}\left(S^{*}\right)-f_{i}\left(S^{*}\right) \mathrm{D}_{k} g_{l}\left(S^{*}\right), \chi_{\hat{S}_{k}}-\chi_{S_{k}^{*}}\right\rangle<0
$$

If S^{*} is an efficient solution to (P), then there exists $u^{*} \in U=\left\{u \in \mathbb{R}^{p}: u>0, \sum_{i=1}^{p} u_{i}=1\right\}$ and $v^{*} \in \mathbb{R}_{+}^{q}$ such that

$$
\begin{equation*}
\sum_{k=1}^{n}\left\langle\sum_{i=1}^{p} u_{i}^{*}\left[g_{i}\left(S^{*}\right) \mathrm{D}_{k} f_{i}\left(S^{*}\right)-f_{i}\left(S^{*}\right) \mathrm{D}_{k} g_{i}\left(S^{*}\right)\right]+\sum_{j=1}^{q} v_{j}^{*} \mathrm{D}_{k} h_{j}\left(S^{*}\right), \chi_{S_{k}}-\chi_{S_{k}^{*}}\right\rangle \geq 0 \tag{1}
\end{equation*}
$$

for all $S \in A^{\mathrm{n}}, \quad v_{j}^{*} h_{j}\left(S^{*}\right)=0, j \in \underline{q}$.
We shall refer to an efficient solution S^{*} to (P) satisfying the first two conditions in Theorem 1.1 for some $\hat{S}_{i}, i \in \underline{p}$, as a normal efficient solution.

2.THE DUALITY MODEL AND DUALITY RESULTS

In this section we present a general duality model for (P). Here we use two partitions of the index sets q and \underline{p}, respectively.

Let $\left\{\mathrm{I}_{0}, \mathrm{I}_{1}, \ldots, \mathrm{I}_{k}\right\}$ be a partition of the index set \underline{p} and $\left\{\mathrm{J}_{0}, \mathrm{~J}_{1}, \ldots, \mathrm{~J}_{m}\right\}$ a partition of the index set q such that $\mathrm{K}=\{0,1, \ldots, k\} \subset \mathrm{M}=\{0,1, \ldots, m\}$, and, for fixed S, u and v, and $t \in \mathrm{~K}$ let the function $\Omega_{t}(S ; \cdot, u, v): A^{\mathrm{n}} \rightarrow \mathbb{R}$ be defined by

$$
\Omega_{t}(S, T, u, v)=\sum_{i \in \mathrm{I}_{t}} u_{i}\left[f_{i}(S) g_{i}(T)-f_{i}(T) g_{i}(S)\right]+\sum v_{j} h_{i}(T)
$$

We associate with problem (P) the dual problem

$$
\begin{equation*}
\max \delta(T, u, v)=\left(\frac{f_{1}(T)}{g_{1}(T)}, \frac{f_{2}(T)}{g_{2}(T)}, \cdots, \frac{f_{p}(T)}{g_{p}(T)}\right) \tag{D}
\end{equation*}
$$

subject to

$$
\begin{gathered}
F\left(S, T ; b(S, T) \sum_{i=1}^{p} u_{i}\left[G_{i}(T) \mathrm{D} F_{i}(T)-F_{i}(T) \mathrm{D} G_{i}(T)\right]+\sum_{j=1}^{q} v_{j} \mathrm{D} h_{j}(T)\right) x \geqq 0 \forall S \in A^{\mathrm{n}} \\
\sum_{j \in \mathrm{~J}_{j}} v_{j} h_{j}(T) \geqq 0, t \in M \\
T \in A^{n}, u \in U, \quad v \in \mathbb{R}_{+}^{q} .
\end{gathered}
$$

In the following we consider a convex function $F(S, T ; \cdot): L_{1}(X, A, \mu) \rightarrow \mathbb{R}$ and $\Lambda_{t}\left(\cdot, v^{*}\right): A^{n} \rightarrow \mathbb{R}, \Lambda_{t}\left(T, v^{*}\right)=\sum_{j \in I_{l}} v_{j}^{*} h_{j}(T), t \in \mathrm{M}$.

The result below establishes several versions of weak duality related to problems (P) and (D).
Theorem 2.1 (Weak duality). Let S and (T, u, v) be arbitrary feasible solutions to (P) and (D), respectively, and assume that any one of the following sets of hypotheses is satisfied:
(a) (i) $2 k \Omega_{t}(\cdot, T, u, v)$ is strictly $\left(F, b, \varphi_{t}, \rho_{t}, \theta\right)-$ pseudounivex at T, φ_{t} is increasing, and $\varphi_{t}(0)=0$ for each $t \in \mathrm{~K}$;
(ii) $2(m-k) \Lambda_{t}(\cdot, v)$ is $\left(F, b, \varphi_{t}, \rho_{t}, \theta\right)$-quasiunivex at T, φ_{t} is increasing, and $\varphi_{t}(0)=0$ for each $t \in \mathrm{M} \backslash \mathrm{K}$;
(iii) $\frac{1}{k} \sum_{t \in \mathrm{~K}} \rho_{t}+\sum_{t \in \mathrm{MK}} \frac{\rho_{t}}{m-k} \geqq 0$;
(b) (i) $2 k \Omega_{t}(\cdot, T, u, v)$ is prestrictly $\left(F, b, \varphi_{t}, \rho_{t}, \theta\right)$-quasiunivex at T, φ_{t} is increasing, and $\varphi_{t}(0)=0$ for each $t \in \mathrm{~K}$;
(ii) $2(m-k) \Lambda_{t}(\cdot, v)$ is strictly $\left(F, b, \varphi_{t}, \rho_{t}, \theta\right)-$ pseudounivex at T, φ_{t} is increasing, and $\varphi_{t}(0)=0$ for each $t \in \mathrm{M} \backslash \mathrm{K}$;
(iii) $\frac{1}{k} \sum_{t \in \mathrm{~K}} \rho_{t}+\sum_{t \in \mathrm{MK}} \frac{\rho_{t}}{m-k} \geqq 0$;
(c) (i) $2 k \Omega_{t}(\cdot, T, u, v)$ is prestrictly $\left(F, b, \varphi_{t}, \rho_{t}, \theta\right)$-quasiunivex at T, φ_{t} is increasing, and $\varphi_{t}(0)=0$ for each $t \in \mathrm{~K}$;
(ii) $2(m-k) \Lambda_{t}(\cdot, v)$ is $\left(F, b, \varphi_{t}, \rho_{t}, \theta\right)$-quasiunivex at T, φ_{t} is increasing, and $\varphi_{t}(0)=0$ for each $t \in \mathrm{M} \backslash \mathrm{K}$;
(iii) $\frac{1}{k} \sum_{t \in \mathrm{~K}} \rho_{t}+\sum_{t \in \mathrm{MK}} \frac{\rho_{t}}{m-k} \geqq 0$;
(d) (i) $3 k_{1} \Omega_{t}(\cdot, T, u, v)$ is strictly $\left(F, b, \bar{\varphi}_{t}, \bar{\rho}_{t}, \theta\right)$-pseudounivex at T for each $t \in \mathrm{~K}_{1}, \bar{\varphi}_{t}$ is increasing, and $\bar{\varphi}_{t}(0)=0$ for each $t \in \mathrm{~K}_{1}, 3 k_{2} \Omega_{t}(\cdot, T, u, v)$ is prestrictly $\left(F, b, \bar{\varphi}_{t}, \bar{\rho}_{t}, \theta\right)$-quasiunivex at T for each $t \in \mathrm{~K}_{2}, \bar{\varphi}_{t}$ is increasing, and $\bar{\varphi}_{t}(0)=0$ for each $t \in \mathrm{~K}_{2}$, where $\left\{\mathrm{K}_{1}, \mathrm{~K}_{2}\right\}$ is a partition of K , with $\mathrm{K}_{1} \neq \varnothing$, $\mathrm{K}_{2} \neq \varnothing, k_{1}=\left|\mathrm{K}_{1}\right|, k_{2}=\left|\mathrm{K}_{2}\right| ;$
(ii) $3(m-k) \Lambda_{t}(\cdot, v)$ is $\left(F, b, \varphi_{t}, \rho_{t}, \theta\right)$ - quasiunivex at T, φ_{t} is increasing, and $\varphi_{t}(0)=0$ for each $t \in \mathrm{M} \backslash \mathrm{K}$;
(iii) $\frac{1}{k_{1}} \sum_{t \in \mathrm{~K}_{1}} \rho_{t}+\frac{1}{k_{2}} \sum_{t \in \mathrm{~K}_{2}} \rho_{t}+\sum_{t \in \mathrm{MK}} \frac{\rho_{t}}{m-k} \geqq 0$;
(e) (i) $3 k \Omega_{t}(\cdot, T, u, v)$ is prestrictly $\left(F, b, \varphi_{t}, \rho_{t}, \theta\right)-$ quasiunivex at T, φ_{t} is increasing, and $\varphi_{t}(0)=0$ for each $t \in \mathrm{~K}$;
(ii) $3\left(m_{1}-k_{1}\right) \Lambda_{t}(\cdot, v)$ is strictly $\left(F, b, \tilde{\varphi}_{t}, \tilde{\rho}_{t}, \theta\right)-$ pseudounivex at T for each $t \in(\mathrm{M} \backslash \mathrm{K})_{1}, \quad \tilde{\varphi}_{t}$ is increasing, and $\tilde{\varphi}_{t}(0)=0$ for each $t \in(\mathrm{M} \backslash \mathrm{K})_{1}, 3\left(m_{2}-k_{2}\right) \Lambda_{t}(\cdot, v)$ is $\left(F, b, \tilde{\varphi}_{t}, \tilde{\rho}_{t}, \theta\right)-$ quasiunivex at T for each $t \in(\mathrm{M} \backslash \mathrm{K})_{2}, \quad \tilde{\varphi}_{t}$ is increasing, and $\tilde{\varphi}_{t}(0)=0$ for each $t \in(\mathrm{M} \backslash \mathrm{K})_{2}$, where $\left\{(\mathrm{M} \backslash \mathrm{K})_{1},(\mathrm{M} \backslash \mathrm{K})_{2}\right\}$ is a partition of $\mathrm{M} \backslash \mathrm{K}$, with $(\mathrm{M} \backslash \mathrm{K})_{1} \neq \varnothing, m_{1}=\left|(\mathrm{M} \backslash \mathrm{K})_{1}\right|,(\mathrm{M} \backslash \mathrm{K})_{2} \neq \varnothing, m_{2}=\left|(\mathrm{M} \backslash \mathrm{K})_{2}\right|$;
(iii) $\frac{1}{k} \sum_{t \in \mathrm{~K}} \rho_{t}+\sum_{t \in(\mathrm{MK})_{1}} \frac{\rho_{t}}{m_{1}-k_{1}}+\sum_{t \in(\mathrm{MK})_{2}} \frac{\rho_{t}}{m_{2}-k_{2}} \geqq 0$;
(f) (i) $4 k_{1} \Omega_{t}(\cdot, T, u, v)$ is strictly $\left(F, b, \bar{\varphi}_{t}, \bar{\rho}_{t}, \theta\right)-$ pseudounivex at $T, \bar{\varphi}_{t}$ is increasing, and $\bar{\varphi}_{t}(0)=0$ for each $t \in \mathrm{~K}_{1}, 4 k_{2} \Omega_{t}(\cdot, T, u, v)$ is prestrictly $\left(F, b, \bar{\varphi}_{t}, \bar{\rho}_{t}, \theta\right)$ - quasiunivex at $T, \bar{\varphi}_{t}$ is increasing and, $\bar{\varphi}_{t}(0)=0$ for each $t \in \mathrm{~K}_{2}$, where $\left\{\mathrm{K}_{1}, \mathrm{~K}_{2}\right\}$ is a partition of K , with $\mathrm{K}_{1} \neq \varnothing, \mathrm{K}_{2} \neq \varnothing, k_{1}=\left|\mathrm{K}_{1}\right|$, $k_{2}=\left|\mathrm{K}_{2}\right|$;
(ii) $4\left(m_{1}-k_{1}\right) \Lambda_{t}(\cdot, v)$ is strictly $\left(F, b, \tilde{\varphi}_{t}, \tilde{\rho}_{t}, \theta\right)-$ pseudounivex at $T, \tilde{\varphi}_{t}$ is increasing, and $\tilde{\varphi}_{t}(0)=0 \quad$ for each $t \in(\mathrm{M} \backslash \mathrm{K})_{1}, 4\left(m_{2}-k_{2}\right) \Lambda_{t}(\cdot, v)$ is $\left(F, b, \tilde{\varphi}_{t}, \tilde{\rho}_{t}, \theta\right)-$ quasiunivex at $T, \tilde{\varphi}_{t}$ is increasing, and $\tilde{\varphi}_{t}(0)=0$ for each $t \in(\mathrm{M} \backslash \mathrm{K})_{2}$, where $\left\{(\mathrm{M} \backslash \mathrm{K})_{1},(\mathrm{M} \backslash \mathrm{K})_{2}\right\}$ is a partition of $\mathrm{M} \backslash \mathrm{K}$, with $(\mathrm{M} \backslash \mathrm{K})_{1} \neq \varnothing, m_{1}=\left|(\mathrm{M} \backslash \mathrm{K})_{1}\right|, \quad(\mathrm{M} \backslash \mathrm{K})_{2} \neq \varnothing, m_{2}=\left|(\mathrm{M} \backslash \mathrm{K})_{2}\right|$;
(iii) $\frac{1}{k_{1}} \sum_{t \in \mathrm{~K}_{1}} \rho_{t}+\frac{1}{k_{2}} \sum_{t \in \mathrm{~K}_{2}} \rho_{t}+\sum_{t \in(\mathrm{MK})_{1}} \frac{\rho_{t}}{m_{1}-k_{1}}+\sum_{t \in(\mathrm{MK})_{2}} \frac{\rho_{t}}{m_{2}-k_{2}} \geqq 0$;
(iv) $\mathrm{K}_{1} \neq \varnothing$ or $(\mathrm{M} \backslash \mathrm{K})_{1} \neq \varnothing$ or

$$
\frac{1}{k_{1}} \sum_{t \in \mathrm{~K}_{1}} \rho_{t}+\frac{1}{k_{2}} \sum_{t \in \mathrm{~K}_{2}} \rho_{t}+\sum_{t \in(\mathrm{MK})_{1}} \frac{\rho_{t}}{m_{1}-k_{1}}+\sum_{t \in(\mathrm{MK})_{2}} \frac{\rho_{t}}{m_{2}-k_{2}}>0
$$

Then $\Phi(S) \nsubseteq \delta(T, u, v)$.
Theorem 2.2. (Strong duality). Let $S^{*} \in \mathcal{P}$ be a normal efficient solution to (P), let $F\left(S, S^{*} ; \mathrm{D} f\left(S^{*}\right)\right)=\sum_{k=1}^{n}\left\langle\mathrm{D}_{k} f\left(S^{*}\right), \chi_{S_{k}}-\chi_{S_{k}^{*}}\right\rangle$ for any differentiable function $f: A^{\mathrm{n}} \rightarrow \mathbb{R}$ and $S \in A^{\mathrm{n}}$, and assume that any one of the sets of hypotheses specified in Theorem 2.1. holds for all feasible solutions to (D). Then there exist $u^{*} \in U$ and $v^{*} \in \mathbb{R}_{+}{ }^{q}$ such that $\left(S^{*}, u^{*}, v^{*}\right)$ is an efficient solution of (D) and $\Phi\left(S^{*}\right)=\delta\left(S^{*}, u^{*}, v^{*}\right)$.

Remark 2.1. Using Theorems 2.1 and 2.2, and tehniques from [5] and [10], we can also obtain a strict converse duality result.

For a detalied presentation of these results, the reader is referred to [9].

3. CONCLUSIONS

We have obtained duality results for a dual model of Zalmai [10], replacing the assumption of sublinearity by that of convexity. Similar results can be obtained for the other dual models from [10]. Also, almost all results of this type present in the literature can be extended to the case where F is not necessarily sublinear.

ACKNOWLEDGEMENTS

This work was partially supported by Grant PN II IDEI no. 112/2007.

REFERENCES

1. BĂTĂTORESCU, A., PREDA, V., BELDIMAN, M., On higher order duality for multiobjective programming involving generalized ($\mathrm{F}, \rho, \gamma, \mathrm{b}$)-convexity, Math. Rep. (Bucur.) 9(59) (2007)2, 161-174.
2. CORLEY, H. W., Optimization theory for n-set functions, J. Math. Anal. Appl. 127 (1987)1, 193-205.
3. MISHRA, S.K., Duality for multiple objective fractional subset programming with generalized ($\mathrm{F}, \rho, \sigma, \theta$)-V-type-I functions, J. Global Optim. 36 (2006)4, 499-516.
4. MORRIS, R. J. T., Optimal constrained selection of a measurable subset, J. Math. Anal. Appl. 70(1979)2, 546-562.
5. PREDA, V., On minmax programming problems containing n-set functions, Optimization 22 (1991)4, 527-537.
6. PREDA, V., On efficiency and duality for multiobjective programms, J. Math. Anal. Appl. 166 (1992)2, 365-377.
7. PREDA, V., STANCU-MINASIAN, I.M., BELDIMAN, M., STANCU, A., Optimality and duality for multiobjective programming with generalized V-type I univexity and related n-set functions, Proc. Rom. Acad. Ser. A Math. Phys. Tech. Sci. Inf. Sci. 6(2005)3, 183-191.
8. PREDA, V., STANCU-MINASIAN, I.M., BELDIMAN, M., STANCU, A., Generalized V-univexity type-I for multiobjective programming problems with n- set function, to appear in J. Global Optim., 2009.
9. PREDA, V., STANCU-MINASIAN, I.M., BELDIMAN, M., STANCU, A., Duality for multiobjective fractional programming with generalized ($\mathrm{F}, \mathrm{b}, \varphi, \rho, \theta$)-univex n-set functions, submitted.
10. ZALMAI, G. J., Efficiency conditions and duality models for multiobjective fractional subset programming problems with generalized ($\mathrm{F}, \alpha, \rho, \theta$)-V-convex functions, Comp. Math. Appl. 43 (2002)12, 1489-1520.
11. ZALMAI, G. J., Generalized ($\mathrm{F}, \mathrm{b}, \varphi, \rho, \theta$)-univex n-set functions and global semiparametric sufficient efficiency conditions in multiobjective fractional subset programming, Int. J. Math. Math. Sci. 6(2005), 949-973.
