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In this paper, the Green’s functions method is employed to study wheel-rail interaction due to a single 
wheel moving at constant speed along a slab track. The slab track is considered as an infinite structure 
of two Euler-Bernoulli beams which are continuous elastic supported by Winkler layers. Starting 
from the properties of track’s Green functions, the track’s Green matrix is assembled in order to 
simulate wheel/rail interaction for any time. The method allows the computing of the nonlinear 
wheel/rail contact and it is accurate and efficient. Both frequency-domain and time-domain analysis 
of wheel/rail interaction are performed and the wheel velocity and nonlinear wheel/rail contact 
influences are pointed out. 
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1. INTRODUCTION 

This paper deals with the response of infinite structure consisting of two continuous linear elastic 
coupled Euler-Bernoulli beams subjected to a uniformly moving wheel. Such a problem is of importance for 
wheel/rail interaction field, concerning particular aspects as the rolling noise [1], [2], [3], and the wear of the 
rolling surfaces [4], [5].  

Generally, the track structure is represented by two kinds of mechanical models: the continuous model 
with one or two layer supports and the periodical model with discrete supports [6]. The first model is 
appropriate for the slab track and the second model is used for the ballasted track. The relatively new slab 
track is applied for high-speed railway lines [7] and for urban railway environment [8]. Here, the infinite 
structure of the double Euler-Bernoulli beams represents the slab track system. Similar models can be found 
in [9], [10], [11], [12].  

The irregularities of the rail are one of the common causes of the wheel/rail vertical vibration, either 
the ballasted track or slab track. The rail irregularities have the wavelength in the range of 0.03 m – 3 m, as it 
follows: long wave and rolling defects with the wavelength between 1 m and 3 m, long wavelength rail 
corrugation from 0.1 m to 1 m, and short wavelength corrugation which has the wavelength of 0.03 m – 0.1 m 
[13]. The irregularities are starting point for wheel/rail vibrations from 15 Hz to 3000 Hz.  

Analysis of wheel/rail interaction can be treated in the frequency-domain or/and in the time-domain 
using either the model of a moving irregularity between a stationary wheel and rail, or the model of a moving 
wheel along the track. The frequency-domain analysis requires a mandatory linear model. In fact, the track 
structure has nonlinearities [14], [15] and the wheel/rail contact is non-linear as well, according to the Hertz 
theory. However, most papers consider the track as a linear structure because this assumption gives the 
results in a good agreement with experimental researches [16]. On the other hand, the nonlinear contact 
influences the level of the wheel/rail vibration in the middle and high frequency range, particularly and for 
this particular reason it will be accounted.   

The track is an infinite structure and its model has to be truncated, especially when the time-domain 
analysis is performed. If the wheel passes beyond the central zone of the model, errors caused by the edge-
approach effect occur. Thus, the length of the considered track for the accurate numerical simulation will be 
limited, due to the boundary conditions. Many practical solutions for this issue may be invoked: the Fourier 
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transform in a semi-analytical approach [10], the cutting and merging method [17], the equivalent parametric 
model [18], the Fourier-series approach [19] or the Green’s functions method [20], [21], [22]. 

In this paper, starting from previous author’s researches, the Green’s functions method is developed for 
the particular case of a moving wheel on a slab track. The problem can be studied in static frame or moving 
frame, but the first solution will be preferred for simplicity reasons.  

2. MECHANICAL MODEL AND GOVERNING EQUATIONS 

The structure of the slab track is composed of a massive concrete slab, into which the rails are 
embedded by means of Corkelast. The concrete slab acts as an efficient barrier between the soil motion 
(Rayleigh waves) and the rails. In light of the assumption that both rails and wheels are symmetrically 
loaded, only half track and a wheel are required for modelling.  

Fig. 2.1. 

The mechanical model of a wheel moving at constant speed along a rail embedded in a slab track is 
depicted in fig. 2.1. Three subsystems can be identified: the wheel, the track and the wheel/rail contact.  

The wheel is regarded as an Mw mass subjected to static load Q0 and the normal contact force Q(t), 
where t stands for time. This approach is frequently used when the natural frequencies of the vehicle 
suspension system are much lower than the ones of the wheel/rail vibration.  

The slab track is reduced to a structure consisting of two Euler-Bernoulli beams coupled by Winkler 
foundation as the rail and the slab and the rail-pad, respectively.                              

The track is supported by the ground which is modelled as a Winkler foundation. The Euler-Bernoulli 
beam model is accurate enough as long as the cross-sectional dimensions are small compared to the bending 
wavelength [23].  

The parameters for the two beams (index r for rail and index s for slab) are: the mass per length unit 
mr,s and the bending stiffness EIr,s. The loss factor of the rail and the slab is neglected. The two Winkler 
foundations have the elastic constants kr,s per length unit and the viscous damping factors cr,s per length unit. 

The vertical motion of the wheel is described by the equation  

)()( 0 tQQtzM ww −= , (2.1)

where zw(t) is the vertical displacement of the wheel.        
Governing equations for the vertical forced vibrations of the track can be written as,  

{ } { }, ( , ) ( )x t x t t=L w q , (2.2)

where Lx,t stands for matrix differential 
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and {w(x, t)} = [wr(x, t) ws(x, t)]T is the column vector of the rail and slab displacements, {q(x, t)} = [Q(t)δ(x 
– Vt) 0]T is the column vector of the vertical forces which act on the track, with δ(.) is Dirac’s delta function.  

The boundary conditions are 

{ } [ ]lim ( , ) 0 0 T

x Vt
x t

− →∞
=w , (2.4)

and all initial conditions are set null, including the wheel displacement and the Q normal contact force. 
The wheel/rail normal force is expressed according to the non-linear Hertz theory by 

( ) (2 / 3( ) / ( ) ( )HQ t C z t z tδ δ= σ ) , (2.5)

where  

( ) ( ) ( , ) ( )w rz t z t w Vt t u Vtδ = − − , (2.6)

is wheel/rail deflection, u(Vt) is the rail roughness at the contact point, CH represents the Hertzian constant 
and σ(.) is the Heaviside function. In fact, eq. (2.6) refers to the wheel/rail relative displacement in which the 
influence of wheel curvature has been neglected. 

To solve the problem of the wheel/track interaction described by the preceding equations, the Green’s 
functions method is proposed. For this aim, the real Green function’s column vector for rail and slab 
displacement {g(x, ξ, t - τ)} = [gr(x, ξ, t - τ), gs(x, ξ, t - τ)]T is calculated starting from the complex Green 
functions of the track (the receptances). Basically, the real Green function’s column vector {g(x, ξ, t - τ)} 
contains the track’s response in the x section at the t-τ moment, if at the τ moment in the ξ section along the 
rail an impulse force occurred and it verifies the equation 

{ } [ ], ( , , ) ( ) ( ) 0 T
x t x t x tξ − τ = δ − ξ δ − τL g . (2.7)

The complex Green function’s column vector of the track represents the track response in the x section, 
caused by a unitary harmonic impulse force by an angular ω frequency, occurring in the ξ section of the rail 

{ } [ ] { }( , , ) ( , , ) ( , , ) ( , , )T
r sx G x G x F x tξ ω = ξ ω ξ ω = ⎡ ξ ⎤⎣ ⎦G g , (2.8)

where F[.] stand for Fourier transform. 
The track’s complex Green functions are the solutions of the following equation 

{ } [ ], ( , , ) ( ) 0 T
x x xω ξ ω = δ − ξL G , (2.9)

where Lx,ω is the Fourier transform of the matrix operator Lx,t. To find out {G(x, ξ, ω)} vector, the previous 
equation is multiplied by the adjoint matrix operator *

,x ωL , then eq. (2.9) yields  

( ){ } [ ]Tx xxHH 0)(),,(,diag *
, ξ−δ=ωξ ωLG , (2.10)

with 
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where a0,4,8 are complex coefficients depending on the track’s parameters and the angular frequency  
 

sr EIEIa =0 , (2.12)
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where i2 = -1. 
Practically, the complex Green functions may be obtained with the help of the Green function of H 

operator, named in the following as Γ(x, x', ω). This function verifies the equation 

)'(),',( xxxxH −δ=ωΓ  (2.13)

and the boundary conditions  

0),',(lim =ωΓ
±∞→

xx
x

 (2.14)

due to the track’s damping. 
As the solution of eq. (2.13), the Green function Γ(x, x', ω) can be obtained solving this equation by 

applying the Fourier transform from the space domain to the wave-number domain and then, using the 
inverse Fourier transform via the contour integration given by the theory of complex variables [12].  

In this work, a different approach is undertaken; the starting point is the features of the Green function 
[24]. The Green function Γ(x, x', ω) is a linear combination of the functions exp (λix) with i = 1 ÷ 8 
corresponding to the solutions λi = λi(ω) of the characteristic equation of the H operator. It can be seen that if 
λi is one solution of the characteristic equation, then −λi and ± iλi are solutions as well. Practically, each 
quadrant contains two solutions of the H operator characteristic equation.  

According to the boundary conditions, the Green function of the H operator has the forms    
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(2.15)

with Reλi > 0 for i = 1 ÷ 4 and Reλi < 0 for i =5 ÷ 8.  
On the other hand, the Green function is continuous in x = x' and its first six derivates are continuous as 

well  
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,  n = 1 ÷ 6. (2.16)

Further on, the seventh derivate of the Green function has a discontinuity in x = x' 
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        All this conditions lead to the next matrix equation 
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where Xi = Ai(x')exp(λix') for i = 1 ÷ 4 and Xi = –Ai(x')exp(λix') for i = 5 ÷ 8. Obviously, the matrix from the 
eq. (2.18) has the Vandermont determinant and in fact all Cramer’s determinants are Vandermont 
determinants, as well.   

Eq. (2.18) has the following solution 
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and finally, the Green’s function of the H operator is obtained 
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  The complex Green function’s column vector of the track results from eq. (2.10) and (2.13) 
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and, by calculating the integral, one obtains 
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where γ1,2 are the eigenvalues in the first quadrant and 

sEIp = , ,)(i2
srssr ccmkkr +ω+ω−+= rr cks ω+= i . (2.23)

Performing the inverse Fourier transform applied to the complex track’s Green functions, the real 
Green functions for the track result 

{ } { } { }∫∫
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where i2 = -1. The last expression resides from the causal character of the track structure.  
The track is considered as an infinite and damped mechanical structure and therefore, the track’s Green 

functions are attenuated in space, time and frequency-domains: 

 { } { } { } 0),,(lim),,(lim),,(lim =ωξ=ωξ=ωξ
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Beside, the track’s Green functions are symmetrical (the Maxwell-Betty principle) 

)},,({)},,({ ωξ=ωξ xx GG , )},,({)},,({ τ−ξ=τ−ξ txtx gg . (2.26)

The real track’s Green functions are calculated by numerical integration using the help of cubic spline 
functions and their previous properties.  

The rail and slab displacement may be determined as 

{ } { } { }∫∫ ∫ τττ−τ=ξττ−ξδττ−ξ=
∞

∞−

tt
QtVxVQtxtx

00
d)(),,(dd)()(),,(),( ggw . (2.27)

     Practically, there is a certain T for which the norm of Green function’s is “concentrated” in the [0, 
T] interval because the track is damped and for any t > T, the rail and slab displacement may be computed as 
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{ } { } .d)(),,(),( ∫−
τττ−τ≅

t

Tt
QtVxtx gw  (2.28)

In order to solve the problem of the wheel/track interaction, the rail displacement at contact point is 
required  

∫ τττ−τ=
t

rr QtVVtgtVtw
0

d)(),,(),( , (2.29)

where gr(Vt, Vτ, t-τ) is the Green function for the rail displacement. This means that for any contact point x = 
Vt, there is a corresponding Green function gr(Vt, Vτ, t-τ) which depends on 0 ≤ τ ≤ t and it is calculated 
from gr(x, ξ, t-τ). Eq. (2.29) is general (for any t > 0), but for the particular case when t > T, only the history 
for τ∈ [t – T, t] is necessary, according to the attenuation in time-domain. Moreover, all contact points x = Vt 
with t > T have the same sequence of Green function because the track has the homogeneous structure.  

From the numeric integration viewpoint, there are two steps to do. The first one refers to 0 ≤ t ≤ T - the 
‘transitory’ period of numeric integration is, while the second step assumes T ≤ t, which means the 
‘stationary’ period of numeric integration. 

When using the small time-steps method on short Δt time intervals in order to integrate eq. (2.27), the 
Green function will be calculated in N = T/Δt+1 and all the obtained values may be encapsulated in the so-
called track’s Green matrix which depends on speed value V. This matrix includes the required values for the 
transitory period of numeric integration. Also, it includes the rail’s Green vector and starting from this, the 
wheel/rail displacements and the normal contact force may be computed very simple and fast.  

In fact, a time partition - t0, t1, … tn with  t0 = 0, tn = t and Δt = ti - ti-1 where i = 1 ÷ n - has to be 
considered. From the equations for the wheel and rail displacement, the recurrent forms are available    
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Assuming that in the time interval [ti-1, ti], the Green functions and the normal contact force Q(τ) have a 
linear variation, the previous integrations may be performed 
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(2.31)

where gr(ti) = gr(Vtn, Vti, tn-ti ). 
As it may be observed, the wheel and rail displacement are depending on the magnitude of normal 

contact force Q(tn) and inserting these displacements in the equation of normal contact force (2.5), a 
nonlinear Q(tn) based equation reads. Solving this equation in an iterative manner, the normal contact force 
results and then coming back to eqs. (2.31), the wheel displacement and the rail deflection at contact point 
are calculated for each integration step. The slab displacement at contact section will be traced in a similar way.                     

Last question discussed in this chapter is focused on the frequency-domain analysis. To do this 
analysis, the following equations have to be considered  
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where αw is the wheel receptance, αr = Gr(Vt, Vt, ω) is the rail receptance at the contact point and αH =1/kH is 
the contact receptance (kH is the contact stiffness). All variables are complex values excepting the contact 
receptance. The rail receptance will be calculated in moving frame because it depends on the wheel velocity.  

3. NUMERICAL APPLICATION 

In this section, both frequency-domain and time-domain numerical analysis of a particular wheel that 
uniformly moves along an embedded track is presented. The model parameters for wheel are as following: 
Mw = 600 kg and Q0 = 100 kN. Track’s parameters are: mr = 60 kg/m, EIr = 6.42 MNm2, mr = 1680 kg/m, EIs 
= 280 MNm2, kr = 33 MN/m2, cr = 5.0 kNs/m2, ks = 66 MN/m2 and cs = 30 kNs/m2. The Hertzian constant CH 
= 9.64 1010 N/m3/2 is determined taking the curve radiuses of the UIC 60 rail-type and the radius of 0.5 m for 
the wheel (conic profile). The stiffness of wheel/rail contact has value of 1.46 GN/m. 

Fig. 3.1. 

Fig. 3.1. displays the track’s receptances and phases, calculated at the point of a unitary non-moving 
harmonic excitation. The rail’s receptance diagram is very similar with the results from the previous related 
papers [10, 12]. The response of the track is dominated by two peaks at 31 and 120 Hz because the rail and 
the slab vibrate as a discrete system with two degrees of freedom. At the first resonance frequency, the rail 
and the slab are in phase and then, they vibrate in anti-phase. The first peak belongs to the slab resonance, 
and the second one is produced by the rail’s resonance. The rail receptance is significantly higher than the 
slab receptance due to its low inertia and the elasticity of the rail-pad.  

               

                                            Fig. 3.2.                                                                                           Fig. 3.3.  

The wheel/rail system’s vertical response is strongly correlated with the receptances of the two bodies 
and contact elasticity (fig. 3.2.). In the frequency range, the rail receptance is influenced by the velocity of 
the unitary harmonic excitation only in the two peaks. In fact, the rail’s receptance decreases when the 
velocity increases. The two resonance frequencies decrease as well, especially the lower resonance. The rail 
and the wheel’s receptances meet at a frequency of about 51 Hz. At low frequencies, the wheel receptance is 
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higher. On the contrary, the rail is more flexible at higher frequencies. The contact elasticity is much lower 
than the rail receptance, but they meet at higher frequencies, i.e. around 1000 Hz.  

The wheel/rail response in frequency-domain of 0-200 Hz is presented in fig. 3.3. The wheel/rail 
system exhibits two resonance frequencies, corresponding to the structure of the two degrees of freedoms. 
The first resonance frequency appears around 30 Hz and the second around 51 Hz when the wheel 
receptance equals the rail receptance as described above. The wheel displacement is higher than the rail’s at 
frequencies below 51 Hz because the wheel receptance is higher in this domain. When passing beyond the 
second resonance frequency, the rail receptance becomes higher than the wheel’s and the rail displacement is 
higher as well. The wheel response accuses anti-resonance at the resonance frequency of the rail, i.e. 120 Hz, 
due to its maximum receptance. On the other hand, both rail and wheel responses decrease at the first 
resonance frequency because the rail is more flexible in case of a moving wheel. 

Fig. 3.4. 

The wheel/rail contact force is displayed in fig. 3.4. The trend of the contact force has two peaks at the 
resonance frequencies of the wheel/rail system (fig. 3.4.a). These peaks are barely influenced by the wheel 
velocity. Beyond this, the contact force decreases while frequency increases and it has the minimum value at 
the rail’s resonance frequency. By gradually increasing the frequency, the contact force increases as well. 
The contact stiffness is of importance at higher frequencies as it may be seen in fig. 3.4.b. In fact, the rail 
profile wears out due to the passing wheels and the contact elasticity decreases. As a result, a large contact 
force appears and influences the wheel/rail behaviour at higher frequencies. More specific, it may be 
demonstrated that the contact force increases as the contact elasticity decreases for higher frequencies than 
the approximate value given as     

3/2
4 34

−

⎟
⎠
⎞⎜

⎝
⎛ α= rrH mEIf , (2.33)

and the contact force has a contrary trend for lower frequencies. In this particular case, the frequency f has 
the following values: f = 770 Hz for kH = 1.46 GN/m, f = 867 Hz for kH = 1.75 GN/m and f = 1009 Hz for kH 
= 2.19 GN/m.   

The complex Green functions are used to calculate the track’s real Green functions. The integration 
domain was chosen between 0 and 5 kHz and the integration step was chosen as 2 Hz.  

Fig. 3.5. presents the rail’s real Green function at unitary impulse point, gw (x, x, t). In the beginning, 
the rail response is dominated by the oscillation which has the frequency of 120 Hz (fig. 3.5.a) and then the 
response exhibits the oscillation from 31 Hz, according to the results from the frequency-domain analysis. 
The response is slowly damped comparing to the ballasted track [20]. However, after 0,5 s, the response 
amplitude is less than 1/440 from its root mean square calculated for this period. 

Fig. 3.6. shows the rail’s response when the unitary impulse point is applied 30 m away. The bending 
waves have the highest frequency of 5 kHz due to cut-off frequency applied by numerical integration. Every 
bending wave has its particular group velocity. For this reason, the rail response is delayed and has a proper 
shape because the bending waves arrive one by one. In fact, the bending wave of 5 kHz arrives first because 
it has the highest group velocity. Basically, the rail is decoupled from the rail pad for the high frequency 
range and the group velocity is given as 
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Starting from this formula, the delay of about 4.7 ms is obtained for the bending wave of 5 kHz, as it 
may be seen in the detail of the figure.  

Fig. 3.5. 

                                 Fig. 3.6.                                                                                            Fig. 3.7. 
Fig. 3.7. displays the slab response under the section of the unitary impulse applied on rail. The 

response magnitude is lower then the rail’s as it may be observed by comparing it to fig. 3.5. Practically, the 
slab response is dominated by the oscillation which has the frequency of 31 Hz, i.e. the own frequency of 
slab on its Winkler foundation. 

In the following, the real Green functions will be used to simulate the dynamics of a moving wheel on 
a slab track for different values of wheel speed. According to the previous results, the transitory period of 0.5 
s for numeric integration has been chosen. Also, the time step for integrating the equations of motion 
corresponds to the frequency of 40 kHz which is adequate for capturing the high frequency dynamic 
response of the wheel/rail system. The real part of the complex Green functions was calculated for the 
resulting track length (VT) at a higher step and then interpolated with spline functions at small step. 

Fig. 3.8. presents the wheel and rail displacements at contact point when the wheel passes at 60 m/s 
over a rail’s manufacturing defect which has the wavelength of 1.6 m and amplitude of 0.1 mm [25]. The 
wheel displacement is higher than the rail displacement due to the elastic Hertzian contact. The appropriate 
frequency for this irregularity is 37.5 Hz and the rail receptance is lower than the wheel receptance. As a 
consequence, the wheel amplitude is higher according to the result from the frequency-domain analysis. On 
the other hand, the displacement of the slab at contact point section and its amplitude are lower than the 
rail’s. The motion has a strong harmonic character because the stiffness contact effect is minor.  

Fig. 3.9. shows the velocity influence on the wheel/rail contact force. The effective contact force 
follows the same trend as in frequency-domain. It exhibits two relative maximum values corresponding to 



 Traian MAZILU 10 

the two resonance frequencies, at 46 m/s and 81 m/s respectively, when the passing frequency equals the 
own wheel/track frequencies.    

 

                                         Fig. 3.8.                                                                                          Fig. 3.9. 
 

                                  Fig. 3.10.                                                                                        Fig. 3.11. 
 
When the rail is affected by the short corrugation, the excitation frequency of the wheel/rail system 

takes places in the middle and high range for usual velocities of the modern railway networks. For instance, 
fig. 3.10 displays the results from the numerical simulation that considers a wheel rolling at 60 m/s over a 
short corrugation which has wavelength of 100 mm and amplitude of 20 μm. The wheel/rail vibration occurs 
at the frequency of 600 Hz and the wheel amplitude is significantly lower than the rail amplitude at contact 
point due to the high wheel inertia.  

Fig. 3.12. 
 
The time evolution of the contact force is not symmetric around the static load due to nonlinearity of 

the Hertzian contact (fig. 3.11). Actually, the contact force increases to an amplitude of 17.17 kN and 
decreases to an amplitude of 16.81 kN. The spectrum of contact force has super-harmonic components and 
the second harmonic is of significant magnitude comparing to the precedent case.  



11 Analysis of infinite structure response due to moving wheel  

When the wheel passes over two sinusoidal irregularities, the spectrum exhibits super-harmonic and 
sub-harmonic components as well. Time history of the contact force and its spectrum are presented in Fig. 
3.12. for the case of a moving wheel at 60 m/s over two sinusoidal irregularities which have the same 
amplitude of 20 μm and the wavelength of 100 and 120 mm respectively. The fundamental components have 
the frequency of 600 Hz and 500 Hz. The frequencies of super-harmonic components are multiples of the 
fundamental frequencies. Practically, these super-harmonics are overlapped by the super-harmonics due to a 
single sinusoidal irregularity corresponding to the wavelength of 100 mm or 120 mm. Also, the spectrum has 
many sub-harmonic components. It may be observed that the strong super-harmonic components are inserted 
between super-harmonics of the two fundamental components.  

4. CONCLUSIONS 

The response of infinite structure consisting of elastically supported double Euler-Bernoulli beams due 
to a moving wheel in the presence of irregularities of rolling surfaces has been analyzed both in frequency-
domain and time-domain. This particular issue is of practical importance for wheel/slab track interaction and 
to point out the basic features of such a system, a simple mechanical model has been considered.   

To this end, an original semi-analytical method based on the outstanding properties of the real Green’s 
functions of the track has been developed for time-domain approach. Actually, these functions were 
calculated by integrating the complex Green functions and then they were encapsulated in track’s Green 
matrix. The real Green’s function of the rail is crucial to solve the interaction problem including the 
nonlinear wheel/rail contact, for any time period. Also, the Green function method surmounts the difficulties 
relates by the model edges effect.   

The wheel/slab track system has two resonances placed in the low frequencies range. The wheel 
velocity influences the wheel/rail response in frequency-domain around two resonances only. The contact 
stiffness is not an important feature in this frequency range. 

On contrary, in the middle and high frequency range, the contact stiffness influences the wheel/rail 
force magnitude. More precisely, the contact force increases as the contact stiffness increases in high 
frequencies range and it decreases in the mid-frequencies domain. Also, the contact nonlinearity originates 
sub-harmonic and super-harmonic components which influence the wear process of the rolling surfaces. 
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