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The present work discusses the radiation of mechanical energy which occurs in modern slab-track 
railway systems. The track is modeled by a beam on elastic half-space, whereas a uniformly traveling 
constant load has been used to represent the axle load. The steady-state response of this system is 
studied by taking into account the mechanical radiation. An understanding of the radiation attenuation 
is important in the design of devices used for suppressing vibrations.  
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1. INTRODUCTION 

Mechanical waves generated by body forces distributed over a finite region Β  of interior V  and 
surface  of an unbounded medium are transmitted through the medium. These waves carry along the 
kinetic and potential energies over considerable distances. The result of this transmission of energy is that a 
part of this energy is lost for the body . The energy leaves the body through its surface . We name this 
lost energy the radiation energy. We also point out that the loss of energy by waves propagating to the 
exterior of the body is said to be the mechanical radiation (Chiroiu, Nicolae and Munteanu [1], Chiroiu and 
Nicolae [2]). The estimation of this radiation energy is crucial to the understanding of the physical structure-
soil interaction. Our goal is to find this energy. This will be achieved through the modeling of the radiation 
force as a nonlocal residual. The nonlocal theory of elastodynamics is used here in order to include the 
existence of the radiation force within the domain of continuum mechanics. In this theory the balance laws 
contain nonlocal residuals of fields which are determined from the global statements. The nonlocal residuals 
are sufficient to account for the interaction of all parts of the body with the state of any material point in the 
body. The local form of the balance law is derived from the basic global balance law by including the 
nonlocal residual whose contribution to the global law is nil (Eringen and Edelen [3], Eringen [4],[5]).  
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        Different aspects of dynamics of railway tracks were discussed by Dieterman and Metrikine [6], [7], 
Metrikine and Dieterman [8], Sheng, Jones and Thompson [9], [10]. Many researchers applied the 3D-model 
of a beam on elastic half-space, mainly to study different aspects of dynamics of railway track (Kononov and 
Wolfert [11], Takemiya [12], Takemiya and Bian [13], Picoux and Le Houédec [14], Chiroiu et al. [15] and 
Munteanu et al. [16]). Nonlinear aspects of wave focusing were studied by Dumitriu et al. [17] and Mailat et 
al. [18]. The dynamic response of a slab–track railway system, loaded by a running train axle has been 
analkyzed by  Steenbergen and Metrikine [19]. The track has been modelled by a beam on elastic and 
viscoelastic half-space, whereas a uniformly traveling constant or harmonic load has been used to represent 
the axle load and its spectral components. 

In considering the mechanical radiation generated in an unbounded medium by a nonlocal body force 
distribution, a couple-radiation pattern is introduced in this paper to describe the interface between the body 
and the half-space on the track response to dynamic loading. 
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2. NONLOCAL MODEL 

Consider an open, 3D region of 3D Euclidean point space 3Ε  referred to the Cartesian coordinate kx , 
. Let Β  denote an initially undisturbed body with interior 1,2,3k = Β  of interior V and boundary , which 

occupies at  this region. Consider the displacement field  and the nonlocal residual body force 
per unit mass 
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where  is the mass density,  and  are Lamé elastic constants, and comma represents the differentiation 
with respect to specified variable. The restriction (2.1)  is the statement of the fact that there is not net 
production of the body forces in the body. Using the Helmholtz decomposition of 
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The problem we consider here is the elastodynamic radiation motion generated in an unbounded 
medium by nonlocal residual forces distributed over a finite region V of the medium. According to the 
completeness theorem there exists a scalar function ( , )x tϕ and a vector-valued function ( , )x tψ such that 

 is represented by (Achenbach [20]) as ( , )u x t u = ∇ϕ+∇×ψ , 0∇ ⋅ψ = . The potentials ϕ  and satisfy the 
motion equations 
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with homogeneous initial conditions 

( ,0) 0xϕ = , , , ( ,0) 0t xϕ = ( ,0) 0xψ = , , ( ,0) 0t xψ = . (2.4)

The solutions of (2.3) and (2.4) can be expressed by the Green’s function for the unbounded medium 
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where  , 1 2 3d d d dVξ = ξ ξ ξ ;p sB  are the spheres with center at x  and radii , and ;p sv t
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The solutions (2.5) are called the retarded potentials [20]. A local disturbance of the medium is not 
instantaneously detected at positions that are at a distance from the region of sources. It takes time for a 
disturbance to propagate from its source to other positions.  

Thus, the residuals f and g  are calculated at the moment ;p sτ  given by (2.6). The quantity 

;| | / p sx v− ξ represents the necessary time that the effect of a disturbance at ξ  to reach the position x . 
The solution of (2.1) and (2.2) is given by 
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where the operator x∇  is calculated with respect to x . 
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Without loss of generality we may consider at x = ξ  a concentrated nonlocal force of magnitude  
directed along the constant unit vector   
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Writing  

( )pϕ =∇ ⋅ γ α ,  ( )sψ = −∇× γ α , 

equations (2.3) become 
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3. RADIATIVE EQUATION 

Consider the case when the position of the point  is lying at the distance |P |x  larger than the linear 
dimension  of the region over which the distribution of residuals is defined. Supposing that |1/ 3l V≈ | lξ  

and l  the expression | |x 1
| |x − ξ

 can be expanded in power series with respect to / xξ  
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where  and αξ xα are the components of ξ  and x . In (3.1) we employed the usual summation over the 
repeated indices that is  and β , . We calculate the potentials in 
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where is the double couple of the residual force which begins to act at 0
,( p sd τ ) 0t = . We name the residual 

body force per unit mass the radiation force per unit mass. The radiative energy that leaves the body in the 
interval of time d  is  t

2
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where   is the acceleration and β  a constant. The nonlocal residual body force per unit mass ,tta u= f̂  is the 
radiative force defined as the time variation of the acceleration field  

,
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In (3.4)  is the radiative time. The radiative force acts upon the body likewise a friction force. The 
rate of work of this force equals the radiation energy that leaves the body per unit time. The loss of energy of 
the body by mechanical radiation can be interpreted by the action upon this body of a radiation force

τ

radf . 
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By including the double couple radiation pattern into the motion equation (2.1) we obtain 

, ,( ) ( tt tttu u uμΔ + λ + μ ∇∇ ⋅ = ρ + τ . (3.5)

4. A SLAB-TRACK RAILWAY SYSTEM 

We apply the theory to investigate the dynamic response of a slab–track railway system to an axle of a 
train (fig. 1). The system consists of a rectangular beam of length , width  and thickness , subject to a 
moving load with a constant velocity V along the beam’s surface, and lying on an elastic half-space at 

l 2b h
0z = . 

The beam cross-section is infinitely rigid and homogeneity of the model is assumed in the longitudinal 
direction. Let bE , , and  be the Young’s modulus, moment of inertia, cross section area and 
respectively the density of the beam. The transverse displacement is denoted by . The load  is 
assumed to be normal to the half-space surface and to act on the centre-line of the beam. Because of the 
symmetry with respect to the plane , the beam is moving only vertically. The motion equation for the 
half space is given by (3.5) where 

bI bA bρ
( , )w x t P

0
( ,
y =

, )x y zuu u u is the displacement vector in the Cartesian coordinate system, 
 and μ  are Lamé elastic constants and ρ  the mass density of the half-space.  λ

 

 
                                             Fig.1. Scheme of a slab-track railway system. 

 
We add the following conditions applied on the interface 0z =  [19] 
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where  denotes the stresses. Numerical solutions of (3.5) and (4.1) for the steady-state response of the 
beam were simulated for the beam parameters: 

σ
P = 200 N, 310× β = 0.3, 6.4m, 2b = bA = 1.1 , 

0.011 , 2400kg , 

2m

bI = 4m bρ = 3m− 10 22 10 NmbE −= × , and for the half-space parameters: 9 2Nm2.33 10E −= × , 
0.31, ρ = 2100 .  ν = 3m−kg

The steady-state response of the beam to traveling load velocities V = 0.5 , 1crv Rv , 1.5 Rv and 2 Rv ( Rv is 
the Rayleigh velocity, 420km/h) are displayed in figs. 2 and 3 as a function of variableRv = ζ . From these 
figures we observe that deflections reach a maximum value for V = 0.5 , 1crv Rv under the loading point. For 
velocities higher than Rv , the deflections become asymmetric with respect to the loading point. When the 
radiation of elastic waves into the half-space and the beam is taking into account the deflections decreased in 
comparison with no radiation. The load has to pump energy to the system while traveling and a part of this 
energy is lost by mechanical radiation. 
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Fig.2. Deflection of beam versus ζ  for load velocity 0.5 Rv (left) and 1 Rv (right). 
 

 
 
 

Fig.3. Deflection of beam versus ζ  for load velocity 1.5 Rv (left) and 2 Rv (right). 

4. CONCLUSIONS 

          Real materials exhibit two kind of attenuation of mechanical disturbances: mechanical radiation and 
the viscous behavior. We have simulated in this paper the mechanical radiation studying the dynamic 
response of a slab–track railway system, loaded by a moving train axle has been considered. The track has 
been modeled by a beam on elastic half-space, whereas a uniformly traveling constant load has been used to 
represent the axle load.   
          The principal consequence of the double couple radiation pattern is that the waves in an unbounded 
elastic medium are subjected to dispersion and attenuation.  The term proportional to the time rate of change 
of the acceleration field is responsible for the radiative behavior. Evidently, the frequency is complex, which 
implies that the amplitude decreases with increasing x  and .  t
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