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We consider a class of nonlinear continuous-time programming problems and a general Mond-Weir 
dual model for this class. We get that WD-invexity property is a necessary and sufficient condition 
for weak duality. 
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1.  INTRODUCTION 

In 1953, Bellman [1] introduced a certain class of continuous-time optimization problems. Since then, 
many new classes of continuous-time nonlinear problems were considered. See De Oliveira and Rojas-
Medar [4], Rojas-Medar et al. [5], Zalmai [6] and the references therein. 

De Oliveira and Rojas-Medar [4] gave a generalization of the notions of KKT-invexity and WD-
invexity for the continuous-time nonlinear programming problem, introduced by Martin [2] for the 
mathematical programming case. Also, they proved two very interesting results: KKT-invexity is a necessary 
and sufficient condition for global optimality of a Karush-Kuhn-Tucker point and WD-invexity is a 
necessary and sufficient condition for weak duality, where a Lagrangian dual (a continuous-time analogue to 
Wolfe's duality) is considered. 

We prove that WD-invexity property of a general Mond-Weir dual for the continuous-time nonlinear 
programming problem also is a necessary and sufficient condition for weak duality. In this respect, we 
consider a general WD-invexity concept and a general qualification constraint, generalizations of the notions 
introduced by Oliveira and Rojas-Medar [4]. 

2.  PRELIMINARIES 

We consider the following continuous-time nonlinear programming problem 

(CNP)                                                  
0

minimize ( ) ( ( ), )
T

x f x t t dtφ = ∫   

subject to 

( )( ) [ ], 0 a.e. in 0, ,g x t t T x X≤ ∈ , 

where X is a nonempty open convex subset of the Banach space 
[ ] ( )( ) ( )( ) ( )( ) ( )( )0, , : ,  ,  and ,nL T X f x t t x t g x t t x tϕ ξ∞ → = =

1
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measurable functions defined on the compact interval [ ]0,T ⊂
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    Let   a.e. in [0,T]} be the set of all feasible solutions of (CNP). We suppose that 

F is a nonempty set and all vectors are column vectors. For 

( )( ){ : ,F x X g x t t= ∈ ≤

,pw w∈ ≤  means that  for all 
i=1,2,...,p; means that  for i=1,2,...,p and w′ stands for the transposed of w. 

w 0i ≤
0 w < w i 0<

    Now, for (CNP) problem, we consider a general Mond-Weir dual. We suppose that the functions 
( )( ), and ( )( ) ( ) { }, , 1,2,..., ,  it g x t t z t i I p∇ ′ ∈ = are Lebesgue integrable in [0,T] for all t f x t t∇

and for all . The general Mond-Weir type dual is [ ]0,nz L T∞∈x X∈
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    This dual problem (MWDP) may be considered as the continuous-time analogue of a general Mond-Weir 
duality formulation [3]. 
    Let FD denote the set of all feasible solutions of (MWDP). 

3. INVEXITY AND WEAK DUALITY 

Definition 3.1. ([4])  There is weak duality between the problems (CNP) and (MWDP) if 

( ) ( )x y,ϕ ψ λ≥  

and all ( ),y λ ∈FD. for all x F∈
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D ion 3.2efinit . ([4]) The (CNP) problem is said to be invex if there exists a function 
[ ]0, nV T× →  such that (:Vη × ) ( )( ) [ ], , 0,nt x t y t t L Tη ∞∈  and 

0

( ) ( ) ( ( ), ) ( ( ), ( ), )
T

x y f y t t x t y t tϕ ϕ η′− ≥ ∇∫ , dt

( )( ) ( )( ) ( )( ) ( ) ( )( ), , , ,i ,g x t t g y t t g y t t x t y t tη− ≥∇ ′   a.e. in [ ]0,T , i I∈ , 

for all   x F and y X∈ ∈ . 
Theorem 3.1. The invexity of (CNP) implies the weak duality between (CNP) and (MWDP). 
We note that the omission of the terms ( )( ) ( )( ) 0, ,   and , ,  i ig x t t i I g y t t i I∈ ∉  in the last inequality 

from sion of Theorem 3.1. Thus, this mak

4. GENERALIZED WD- INVEXITY AND WEAK DUALITY 

In this section w t qualification. Then 
we pr

invex

Definition 3.2 does not affect the conclu es it possible to use a 
generalized WD-invexity for (CNP). 

e introduce a generalized WD-invexity and a generalized constrain
ove the equivalence of weak duality for (CNP) and generalized WD-invexity defined below. 
 Definition 4.1. We say that the (CNP) problem is generalized weak duality invex (generalized WD-
) if there exists a function [ ]: 0, nV V Tη × × →  such that ( ) ( )( ) [ ], , 0,nt x t y t t L Tη ∞∈  and 

0

( ) ( ) ( ( ), ) ( ( ), ( ), )
T

x y f y t t x t y t tϕ ϕ η′− ≥ ∇∫ , dt

( )( ) ( )( ) ( ) ( )( ), , ,i i ,g y t t g y t t x t y t tη− ≥∇ ′  a.e. in [ ]0,T , 0i I∈ , 
 

( )( ) ( ) ( )( )0 , ,i ,g y t t x t y t tη≥∇ ′  a.e. in [ ]0,T , 0i I∉ , 

for all   x F and y X∈ ∈ . 
Remark 4.1. For 0ν =  generalized WD-invexity reduces to WD-invexity defined in [4]. 

 Remark 4.2. For 

Definition 4.2. We say that g satisfies the generalized constraint qualification (GCQ) if there is no 
[ ]0,T∞ , ( ) 0iv t ≥  a.e. in [ ]0,T , 0i I∈ , not all zero, such that  iv L∈

00

( ) ( ( ), ) 0    .
T

i i
i I

v t g x t t dt for all x X
∈

≥ ∈∑∫  

I ,k 1,k ,  ν= Φ = (GCQ) becomes (CQ2) introduced in [4]. 
er (GCQ), wea DP) if and only if (CNP) 

is gen

5. CONCLUSION 

In this note we proved that in the con me nonlinear programming problem, weak 
dualit

 Theorem 4.1. Und k duality holds between (CNP) and (GMW
eralized WD-invex. 

text of continuous-ti
y is attained if the general Mond-Weir dual of the problem previously mentioned has the WD-invexity 

property. On account of the importance and accuracy of the results from [4], we think that it is interesting 
and useful to establish corresponding formulations for both the multiobjective continuous case and the case 
where invexity is replaced by, for example, ρ-invexity. 
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