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This paper deals with the ill-posed nonlinear problem of the shape reconstruction of the Stokes fluid 
flow. Shape parameters are estimated with a genetic algorithm inverse method by reducing the errors 
(objective function) between estimated and observed velocity-pressure data. Recommendation 
concerning the proposed technique is deduced with regard to the algorithm performance 
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1. INTRODUCTION 

          There are few studies in the literature considering the shape reconstruction of an 
immersed obstacle using the genetic algorithms. A theoretical foundation of the shape reconstruction of 3D 
Stokes flows is given by Yan and Ma [1] by establishing the differentiability of the initial boundary value 
problem with respect to the interior boundary curve in the sense of a domain derivative. These authors solved 
the problem by a regularized Newton method. They established the domain derivative of the Stokes 
equations in a multiple bounded domain, and derived an efficient numerical approach for the solution of the 
2D realizations of such problem. In [2], Yan and Ma solved a shape reconstruction problem for heat 
conduction with mixed condition, and, in [3], the same authors derived the expressions of domain derivative 
for the steady Navier–Stokes equations 

Chapko, Kress and Yoon [4], [5] consider the inverse boundary problem for the time-dependent heat 
equation in the case of perfectly conducting and insulating inclusions. Hettlich [6] and Kirsch [7] solved the 
inverse obstacle scattering problem for sound soft and sound hard obstacles. Other publications on closely 
related topics are revealed by Matsumoto and Kawahara [8], Newman III et al. [9], Katamine et al. [10], 
Bernad et al. [11], Carabineanu  [12], Dumitrescu, Cardoş and Alexandrescu [13]. The problem addressed by 
this paper is the shape reconstruction of 3D flows governed by Stokes equations from pressure-velocity data 
by using a genetic algorithm GA. Genetic algorithms are a class of optimization algorithms that mimic 
genetic recombination and natural selection (Goldberg [14], Giuclea et al.[15], Preda [16]).  

To our knowledge, the shape reconstruction of the Stokes fluid flow has not yet been solved by using a 
genetic algorithm. In our case, the GA is based on the modeling of the unknown boundary as a n-ellipsoid 
with only 10 parameters (Bonnet [17], Chiroiu, Munteanu and Nicolescu [18]). This paper deals with the 
shape reconstruction of the Stokes fluid flow. Shape parameters are estimated with a genetic algorithm 
inverse method.  

2. FORMULATION OF THE PROBLEM 

=  and the pressure The aim of the problem is to find the velocity of the fluid p , defined in 
 , 2 1Ω 1 2Ω 2 3

1 2\Ω =Ω Ω Ω ⊂ , with Ω and  two simply connected bounded domains of class C  in R . The 
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boundaries of and  are denoted by 1Ω 2Ω 1Γ  and 2Γ , respectively. The fields u  and p satisfy the following 
equations and boundary condition  

u p∇ f−μΔ + =  in Ω ,  div 0 in ,  0u =  on 1Γ , 0u =  on 2 , (2.1)u = ΓΩ

where f  is an applied body force in , and Ω μ  the coefficient of kinematic viscosity. The Reynolds number 
is defined as the inverse of μ , i.e. . The divergence free condition d  in Ω  comes from the 
fact that the fluid has a homogeneous density and evolves as an incompressible flow. The shape of 

Re 1= /μ iv 0u =

2Ω , i.e. 
the interior boundary  is unknown, and the solution u  and respectively the pressure 2Γ p  of (2.1) depend on 

 : , 2Γ 2
u uΓ=

2
p pΓ= . Both, the divergence free condition and the unknown surface  conditions are 

difficult to impose on the mathematical and numerical point of view. To solve the problem (2.1) an 
optimization technique is applied using a genetic algorithm (Deb [19], Chiroiu and Munteanu [20], Chiroiu 
et al. [21], [22]). 

2Γ

3. DESCRIPTION OF UNKNOWN GEOMETRY OF Γ  2

The model considered here is to determine the unknown interior boundary  by using an n-ellipsoid 
[17], [18]. The goal of the inverse problem is to find the set of parameters (shape parameters) that define 

2Γ

2Γ  
such that the n-ellipsoid best fits the set of data points. An n-ellipsoid is defined by 10 shape parameters , 

: arbitrary center coordinates 
id

1,2,...10i = , ,G G Gx y z , principal axes , the principal directions defined by 
Euler angles 

, ,a b c
, ,ξ ψ ζ  and the exponent . The advantage of this model is the small number of parameters 

needed to represent a shape. The boundary 
n

 is defined as the image of the unit n-sphere  of equation S2Γ

1n n nx y z+ +

y→

3

= , (3.1)

through the affine transformation 

1 2 3( , ,y Y Y Y S 1 2 3 2( , , )y y y= ∈Γ , (3.2))= ∈

2 r c+

with 

1 1G= + 1y x r aY 1 22 2 3r bY r1 12 13 ,r bY Y+ 2 21Gy y r aY 23 ,cY= + + +

1 32 2 33 3 ,Gy z aY bY r cY= + +

 

 
(3.3)

3 3r 1 r+

where ( ,= ξ , )ij ijr r ψ ζ  are the components of the rotation, which transforms the coordinate axes into the 
principal axes of the ellipsoid. These components are given by  

cos sin 0ψ − ψ⎡ ⎤
⎢ ⎥( , cos 0

0 0 1
R z ψ ψ⎢ ⎥

⎢ ⎥⎣ ⎦

( , ) 0 cos si
0 sin co

R x, 
1 0 0

,  
cos sin 0ζ − ζ

) sinψ = n
s

⎡ ⎤
⎢ ⎥ξ = ξ − ξ⎢ ⎥
⎢ ⎥ξ ξ⎣ ⎦

( , ) sin cos
0 0

R z 0
1

⎡ ⎤
⎢ ⎥ . (3.4)ξ = ζ ζ⎢ ⎥
⎢ ⎥⎣ ⎦

For , (3.1) yields the usual unit sphere and for 2n = n = ∞  the unit cube of vertices ( . By 
using (3.2) and (3.3) the unit sphere and the unit cube are respectively transformed into ellipsoids and boxes, 
with arbitrary center, size and orientation. The continuous dependence of the solutions  and 

1, 1, 1)± ± ±

u p  on 
variations of the unknown boundary was established in [1]. Extra data is necessary in order to solve the 
inverse problem, i.e. the velocity u  and the pressure 

2Γ
p  measured on a surface  exterior to . 0S 2Γ
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3. MINIMIZATION ALGORITHM 

The minimization algorithm is formulated as : 
Given u  and p  on a surface  exterior to 0S 2Γ   

0S ˆ|u u≡ , 
0S ˆ|p p≡ , (4.1)

(1) find  as the minimizer of the distance 2Γ 2( )I Γ  between the measure data  and û p̂  and 
computed data  and 

2Γ 2
u pΓ  for a fixed location of 2Γ  

2 2Γ 2 22 Γ Γmin ( )I Γ , ( ) ( , )I I u pΓ ≡ ,    (4.2)

(2) find  and  u p  in , subject to constraints 1 2

( , , ) 0g u p u p fΓ = μΔ −∇ + =

\Ω =Ω Ω

 in Ω ,   1 2

2 2g ( , , )=div 0u p uΓ =   in Ω , 

2Γ , 

(4.3)

3 2 1( , , ) 0g u p uΓ = =  on Γ , 4 2( , , ) 0g u p uΓ = =  on 

in conforming with (2.1). Here, the boundary 2Γ  is sought by determining 10 shape parameters , 
, from minimizing the distance 

id
1,2,...10i = 2(I )Γ  between the measured and computed data on .  0S

The least-squares functional is defined as 

( )2 2
2

1 ˆ ˆ( ) | ( ) ( ) | | ( ) ( ) | d
2 yI u y u y p y p yΓ = − + −∫

0S

S

2

.    (4.4)

To avoid the computation of the derivatives of (4.4) with respect toΓ , the functional (4.4) is 
replaced by 

2 2
2

1 ˆ ˆ( ) | | | |
2

m

i i i i
1i

J u u p pΓ = − + −∑
=

,    (4.5)

where  is the number of observed points on . For each solution u  and m 0S p  in 1 \ 2Ω =Ω Ω , and boundary 
, the constraint violation for each constraint (4.3) is calculated as follows [19] 2

≠

⎩

Γ

2 2
2

| ( , , ) |, if ( , , ) 0,
( , , )

0, if otherwise,  1,2,3,4.  
i i

i

g u p g u p
u p

i
Γ Γ⎧

ω Γ = ⎨ =
 (4.6)

Thereafter, all constraints violations are added together to get the overall constraint violation. 
4

2 2
2 2

1 ˆ ˆ( , , ) | | | | ( , , )
2

m

i i i i iJ u p u u p p u p
1 1i i= =

Γ = − + − + ω∑ ∑ Γ . (4.7)

By taking account of (4.7), the minimization algorithm (4.1)-(4.4), can be formulated as :        
Given  and u p  on a surface  exterior to 0S 2Γ   

0S ˆ|u u≡ , 
0S ˆ|p p≡ , (4.8)

 find ,  and2Γ u p in  from  1 2\Ω =Ω Ω

2

4
2 2

2 2
1 ˆ ˆmin ( , , ) | | | | ( , , )
2

m

i i i i iJ u p u u p p u pΓ Γ = − + − + ω Γ∑ ∑
1 1i i= =

. (4.9)
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 Nonlinear minimization problem (4.8) and (4.9) is numerically solved by using a genetic algorithm. 
The numerical implementation requires the forward solution of (2.1) for reasonable a priori information for 
observed data u  and p  on a surface  exterior to 0S 2Γ (4.1). The forward solution is solved by FEM. 

5. SIMULATION STUDIES AND RESULTS 

As the same n-ellipsoid can result from many combinations of Euler angles and permutations of 
principal axes, it is difficult to measure the accuracy of the identification of 2Γ  by means of comparison of 
the identified parameters ,  with those defining the true id 1,2,...,10i = 2Γ  and used to compute the simulated 
data. Instead, the relative errors  for the volume, boundary area and geometrical inertia tensor (with 
respect to the fixed coordinates ) are computed. The indicator 

, ,V Aε ε ε

1 2 3Ox x x
I

Iε  is very sensitive to the orientation 
of  in space, together with the ratios2Γ / 0nJ J ( , , )J J u p, where n n Jand  an initial value. = Γ 0 nΓ  is the 
current after the n-th iteration of the minimization process. Expressions of indicators ε  in terms of 
boundary integrals are as follows [17] 

2Γ , ,V A Iε ε

2

( ) 1
( )

nV
V

Γ
ε = −

ΓV , 0
1( ) d
3 i i y

S

y n S= ∫V S ,  
2

( ) 1
( )

nA
AA
Γ

ε = −
Γ

, 0( ) d y
S

A S S= ∫ , (5.1)

1/ 22
21 , 3

2
21 , 3

( ( ) ( ))

( )
ij n iji j

I
iji j

I I

I
≤ ≤

≤ ≤

⎛ ⎞Γ − Γ
⎜ ⎟ε =
⎜ ⎟Γ⎝ ⎠

∑
∑

, 1( ) d
5ij i j

S

I S y y y n S= ∫ , (5.2)k k y

popN
where  is the unit n-sphere defined by (3.1). S

The genetic algorithm starts with an initial population of = 10 chromosomes which is a 

pop bitsN N×  matrix filled with randomly generated ones and zeros bits. Natural selection occurs each 
generation or iteration of the algorithm. Every iteration, 0.5 popgoodN N=  chromosomes are used for 

reproducing while the discarded chromosomes badN  are replaced by new offspring. The approach uses the 
single-point crossover where a crossover point is randomly selected. Mutation points are randomly selected 
from N pop bitsN×

0

bits in the population matrix.  

                    Table 5.1 Results for non-perturbed data ( ε = 2Γ

2Ω 0/final

) for reconstruction of . 

    α  Iterations J J × 710 610−  −  
710−  

Vε ε× × IA ε

× 510−

 

 
sphere 0.01 

0.15 
0.24 
0.50 
0.75 

63  
72 
75 
80 
94 

3.88 
3.61 
2.29 
3.53 
3.75 

8.22 
7.56 
7.14 
8.67 
8.99 

6.13 
5.34 
5.41 
5.47 
6.09 

9.54 
8.02 
8.05 
9.91 
9.33 

Rectangular 
box 

0.01 
0.15 
0.24 
0.50 
0.75 

68 
69 
59 
82 
89 

3.59 
3.17 
2.14 
2.99 
3.18 

11.40 
10.66 
8.78 
9.15 
9.33 

10.22 
8.25 
7.45 
7.78 
6.90 

9.13 
8.75 
7.34 
7.83 
8.33 

 
NThe number of mutation is given by relation mutations pop bitsN Nα 1, where 0 <= α <

elite

 is the mutation rate 
(Majdalani, Angulo-Jaramillo and Di Piedro [23]). Mutations are not allowed on the final iteration and on a 
number N  of the best solution (elite solution) that propagate unchanged. The algorithm is run for a 
number of generations 100 and generationsN = eliteN =1. The starting population is the same for different α  
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values. In our numerical examples, the exterior domain 1Ω  is a sphere of radius 1. Two geometries are taken 
for interior domain , i.e. a sphere with radius 0.16 (2Ω m = 50 points) and a rectangular box of dimensions 
(0.28, 0.21, 0.02) ( 65 points). The number of iterations of genetic algorithm, the values ofm = 0/finalJ J , 

 for different values of  and the Reynolds number , ,V A Iε ε ε α Re = 100, are displayed in table 5.1, in the case 
of non-perturbed data.  

 
 

Fig.5.1. Convergence history of 0J  for sphere. /finalJ
 

We see from this table that for all domains the accuracy is acceptable for 0.24. Numerical 
experiments show that the value of 

α =

0/finalJ J  reaches a maximum for α = 0.01 and a minimum forα = 0.24. 
The increase of  beyond 0.24 decreases the performance of the algorithm. The error indicators 

reach a maximum for 0.01 and a minimum for
α

, ,V A Iε ε ε α = α = 0.24 for all domains. 
The convergence history of 0/finalJ J , for α = 0.24, are displayed in fig. 5.1 for the sphere, and in fig. 

5.2 for the rectangular box, respectively. 
 

 
 for rectangular box. Fig.5.2. Convergence history of 0final /J J

Results for perturbed data ( ε = re shown in table 5.2. For all cases, 0/final
310− ) a J J  a maximum 

for α = 0.01 and minimum forα = 0.24. We e that the numerical solution of the inverse problem hence 
behaves well with respect to perturbed data. This is probably a consequence of the fact that unknown 

reaches 
a  se
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geometry is described using only 10 parameters. This behavior was also observed for different initial 
populations and different values of eliteN . F eliteor N =0 eliteand N =2, the numerical solution becomes instable 
with respect to measurement noise and the convergence is reached after a very large number of iterations, 
with a lower accuracy. For eliteN =1, all ca xhibit very good convergence and accuracy, especially for non-
perturbed data. Fig.5.3 displays the initial, exact and approximate shapes of both interior domains for 
randomly different centers.  

ses e

                      Table 5.2 Results for perturbed data ( 310−ε = ). 

    α  Iterations 0/finalJ J ×
2Ω

610−  
Vε × 610−  Aε × 510−  Iε

410− ×  

sphere 0.01 
0.15 
0.24 
0.50 
0.75 

69 
71 
73 
85 
99 

2.34 % 
2.32 % 
1.44 % 
1.66% 
1.77% 

2.95 
2.81 
2.45 
2.97 
3.10 

3.78 
2.44 
3.87 
4.20 
4.41 

3.33 
3.21 
2.48 
4.45 
4.62 

Rectangular 
box 

0.01 
0.15 
0.24 
0.50 
0.75 

101 
109 
109 
123 
119 

1.45 
1.38 
0.38 
1.19 
1.37 

3.45 
2.68 
2.08 
2.19 
3.03 

2.54 
1.65 
0.98 
1.39 
2.19 

2.93 
2.33 
1.56 
2.78 
3.23 

 

 
Fig.5.3. Interior domains  with initial, exact and approximate boundaries, for randomly different centers. 2Ω

2

6. CONCLUSIONS 

The conclusions of the article are as follows: We determine the unknown interior boundary Γ  by 
using an n-ellipsoid. This allows finding the shape parameters such that the n-ellipsoid best fits the set of 
data points. The results of several numerical experiments show that GA gives good reconstruction, and 
indicate the feasibility of the algorithm. The basic components of the inversion strategy perform well when a 
moderate number of shape parameters are used for the description of the unknown domain.  

Several mutation rates and numbers of elite solutions were explored in order to study their influence on 
the algorithm fitness. It was found that the mutation rate α is a sensitive parameter which has an optimum 
value around 0.24 yielding best performance. A good elitist strategy is obtained only for eliteN =1. The results 
obtained on the model problem show the efficiency of GA for the shape reconstruction of the Stokes fluid 
flow. The GA can find the optimal solution in one single simulation run due to their population-approach. 
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We conclude that the proposed algorithm is a basic tool in the design of many industrial devices such as 
aircraft wings, automobile shapes, boats, and so on. 
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