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This paper proposes a type of fuzzy numbers called superior-LR-piecewise (s-LR), whose theoretical 
properties are investigated. We also propose a chance constraint-type possibilistic programming 
model; the coefficients of the model are s-LR fuzzy numbers and a Value at Risk (VaR)-type s-LR 
parameter which controls the chances (in possibilistic terms) of obtaining unsatisfactory value of the 
objective function. The results obtained have a high degree of generality, but an immediate 
application may refer to the portfolio selection problem for which both modelling and solving aspects 
are discussed. 
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1. INTRODUCTION 

The theory of fuzzy sets, introduced by Zadeh [17], has been applied in various fields of science. One 
of them is Financial Mathematics, and, more precisely, the portfolio selection issue [6, 8, 10, 16]. One of the 
main theoretical tool used is the fuzzy mathematical programming (FMP) [9, 15]. In some situations, the 
fuzzy approach is used as an alternative to classical probabilistic approach [2, 8, 15], in other more complex 
(multistage) situations, both methods are used in successive steps [5]. In this work, our goal is to create a 
new framework for the portfolio optimization problem. We first propose a special type of fuzzy numbers 
called superior-LR-piecewise (s-LR) whose theoretical properties are investigated. By defining this new 
fuzzy concept, we better capture the two major aspects in modelling the securities rate of returns in portfolio 
optimization:  the statistical data information and the experts’ knowledge. We also propose a chance 
constraint-type possibilistic programming model in which the coefficients are s-LR fuzzy numbers. We use a 
Value at Risk (VaR )-type s-LR parameter which controls the chances (in possibilistic terms) of obtaining 
unsatisfactory total return. Since our approach provides a model that can be reduced to solving several linear 
programming models, the benefit is not only theoretical but also computational. 

2. PRELIMINARY THEORETICAL RESULTS 

Definition 1. Consider a subset 1F  of the whole set of fuzzy numbers denoted by F . A fuzzy number 
a~  is considered to belong to the set 1F  if the following requirements are met: there exist the sets ,A B ⊂ \ , 

{ }11, 4 ,i i iA l i l l += = < , { }11, 4 ,j j jB r j r r += = < , 54 rl < , and a~  is characterized by the membership 

function [ ]: 0,1a →\ , with ( ) 0=xa  for ( ) ( )∞∪∞−∈ ,, 81 rlx  and 
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We also note the number ( ) ( )( )8541 ,...,,,...,~ rrlla = . As in [3] and [7], the fuzzy number 1
~ Fa ∈  can also be 

written in the parametrized form ( ) ( )( ) [ ]{ }, , 0,1a a t a t t t≡ ∈� , where ( ) ( ) [ ], : 0,1a t a t →\  and 
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The addition and the scalar multiplication (the scalars are real numbers) can be expressed as 

( ) ( ) ( ) ( )( ) [ ]{ }1,0,,~~ ∈++≡+ tttbtatbtaba , (3)

( ) ( )( ) [ ]{ }1,0,,~ ∈≡ tttaktakak , if , 0k k∈ >\ , (4)

( ) ( )( ) [ ]{ }1,0,,~ ∈−−≡ tttaktakak , if , 0k k∈ <\ . (5)

Using previous lines, the following result emerges. 

PROPOSITION 1. If 1
~,~ Fba ∈ , ( ) ( )( )8541 ,...,,,...,~

aaaa rrlla = , ( ) ( )( )8541 ,...,,,...,~
bbbb rrllb = , and 

, , 0, 0u v u v∈ > <\ , then 

( ) ( )( )88554411 ,...,,,...,~~
babababa rrrrllllba ++++=+ , (6)

( ) ( )( )8541 ,...,,,...,~
aaaa ururululau = , ( ) ( )( )1458 ,...,,,...,~

aaaa vlvlvrvrav = . (7)

Example 1. Let ( ) ( )( )20,16,15,10,8,7,4,1~ =a  and ( ) ( )( )22,14,11,9,6,5,2,1~
=b . The graphical representations 

of ba ~~ +  (Fig. 1) and a~2  (Fig. 2) are below. 
 

 
Fig. 1 – The sum of two numbers from F1. Fig. 2– Scalar multiplication. 

Carlsson and Fullér [1] defined the crisp possibilistic mean value of a fuzzy number a~  as 
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PROPOSITION 2. Consider ( ) ( )( ) 18541 ,...,,,...,~ Frrlla ∈= . The following statement holds; 

( ) ( ) ( ) ( ) ( )[ ]54637281
1 111815496~ rlrlrlrlaE +++++++= − . (9)

Proof: From relation (8), we have  

( ) 21
~ JJaE += ,  (10)

where ( )
1

1
0

dJ ta t t= ∫  and ( )
1

2
0

dJ ta t t= ∫ . 

 On the other hand, we have 

( ) ( ) ( ) ( ) ( )
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2 d 4 3 2 d 4 4 3 dJ t t l l l t t t l l l l t t t l l l l t   =  − +  + − + − + − + − =     ∫ ∫ ∫  

( )4321
1 111815496 llll +++= − . 

2J  is calculated similarly and using (10), the final result is obtained. 

 In Dubois and Prade [4] and Liu [11] the possibility of ba ~~ ≤  (for Fba ∈
~,~ ) and the possibility of 

ka ≤~  (for Fa ∈~ , k∈\ ) are defined as  

( ) ( ) ( )( ){ }Pos sup min , , ,a b a x b y x y x y≤ = ∈ ≤�� \ , (11)

( ) ( ){ }Pos sup ,a k a x x x k≤ = ∈ ≤� \ . (12)

PROPOSITION 3. If ( ) ( )( ) 18541 ,...,,,...,~ Frrlla ∈=  then 
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THEOREM 1. Consider p in (0, 1) and a fuzzy number ( ) ( )( ) 18541 ,...,,,...,~ Frrlla ∈= . Then 
( ) pa ≤≤ 0~Pos  if and only if 

(i) ( ) 1 21 2 2 0p l pl− + ≥ , when 21 0 ll ≤≤ ; 

(ii) ( ) ( )2 33 4 2 4 0p l p l− + − + ≥ , when 32 0 ll ≤≤ ; 

(iii) ( ) ( )3 44 4 3 4 0p l p l− + − + ≥ , when 43 0 ll ≤≤ . 

Proof: (i) Assume ( ) pa ≤≤ 0~Pos . Taking into account (13), we obtain ( ) plll ≤−− −1
1215.0 . Since 

012 >− ll , we have ( ) 02 112 ≥+− lllp , which leads to ( ) 1 21 2 2 0p l pl− + ≥ . Reciprocally, if 

( ) 1 21 2 2 0p l pl− + ≥ , the conclusion is obtained by reasoning in reverse order. Analogously, we obtain (ii) 
and (iii). 
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THEOREM 2. Let ( ) ( )( ) 18541 ,...,,,...,~ Frrlla ∈=  be a fuzzy number and ( )1,0∈p  a real number. Then 
the following assertions hold. 

(i) If 01 ≥l  then ( ) pa ≤≤ 0~Pos ; 
(ii) If 01 <l  then ( ) pa ≤≤ 0~Pos  if and only if { }3,2,1∈∃i  such that ( )1 10 1i i i i i il l h l h l+ +≤ ≤ − + , where 

( ) ( )35.35.025 22 +−+−+−= iiiiphi . 
Proof: (i) From (13) we get  ⇒≥ 01l ( ) pa ≤=≤ 00~Pos . 
(ii) We suppose that ( ) pa ≤≤ 0~Pos . If 04 ≤l  then ( ) pa >=≤ 10~Pos . Thus, 04 >l . We have the 

following possible situations: 21 0 ll ≤< , 32 0 ll <≤ , or 43 0 ll <≤ ; 21 0 ll ≤< , results in 021 ≤ll  and 
( ) ( ) pllla ≤−−=≤ −1

1215.00~Pos . Hence ( ) 1 20 1 2 2p l pl≤ − + , or ( )1 1 1 20 1 h l h l≤ − + . Reciprocally, for 
1=i , we have ( )1 2 1 1 1 20 1l l h l h l≤ ≤ − +  and 21 0 ll ≤< . On the other hand, from the right side of the previous 

double inequality, we deduce  ( ) pa ≤≤ 0~Pos . The other cases ( 2=i  and 3=i ) are similar. 

3. THE POSSIBILISTIC PROGRAMMING MODEL 

Consider the possibilistic optimization model 
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and jj β,α  are real numbers which belong to the closed interval [ ]1,0 , ja~  are basically any shape fuzzy 

numbers and ( )T
1 2, , ..., n

nx x x= ∈x \  represents the decision vector. The model (14) cannot be solved in this 
general form. In literature, triangular and trapezoidal numbers are preferred because they are convenient to 
use. The problem is that this choice leads to limited results in true reflection of the phenomena studied. By 
modelling the uncertain parameters in the model as s-LR fuzzy numbers, we better capture the two major 
aspects:  the statistical data information and the experts’ knowledge. Therefore, in (14) we consider ja~  and 

s-LR fuzzy numbers, i.e., of the form ( ) ( )( ) 18541 ,...,,,...,~ Frrlla jjjjj ∈= , for all nj ,1= , respectively 

( ) ( )( )8541 ,...,,,...,~ bbbbb = . Thus, by Theorems 1-2, the equivalent form of  model (14) is 
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So, the final form of the initial possibilistic model is a linear optimization problem. At this point, the solution 
can be obtained with well established techniques such as the simplex method. 

4. APPLICATION TO THE PORTFOLIO SELECTION PROBLEM 

4.1. The portfolio selection model 

In the probabilistic framework, since the introduction of mean-variance portfolio selection models in 
the work of Markowitz [12, 13], variance has been accepted as a risk measure. However, over time, other 
measures of risk with better properties have been introduced. The most representative of them is the Value-
at-Risk (VaR ) [14, 16]. In terms of losses, the Value at Risk is defined as the amount of loss such that the 
probability of running a loss this large or even larger over a certain period of time, is limited. If our model 
formulation is considered in terms of gains (return), the definition of VaR  can be written analogously. A 
Mean-VaR  efficient portfolio [8], maximizes the portfolio total return and, simultaneously minimizes the 
VaR  at a specified confidence level. Solving a bi-objective problem is a difficult task and even more as VaR  
is itself the optimal value of a minimization problem. Therefore, a value V  of the minimum accepted return 
is specified and the following model is considered, namely, 
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Here P  means “probability”, jR , nj ,1= , are the return rates of security j  expressed as random variables, 

jx  is the fraction of the total capital invested in the security j  , jj β,α  are the lower and upper limits of the 
investment in security j  and ε  is the given confidence level applied to the probabilistic constraint (chance 
constraint). The possibilistic portfolio selection model formulation corresponding to the previously 
mentioned probabilistic model (19) has the form 























∑
=

Ω∈

n

j
jjaxE

1

~max
x

, (21)

where 
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The return rates ja~  ( nj ,1= ), and the predetermined acceptable value of the minimum accepted return b~  
are modeled as s-LR fuzzy numbers and E represents the possibilistic mean value from Proposition 2.  

4.2. Short considerations on the method 

 When solving the possibilistic portfolio optimization problem (21), the possibilistic constraint compels 
us to take into consideration the cases presented in Theorems 1 and 2 and consequently, the portfolio model 
(21) has a similar formulation to (16) as a linear optimization problem with the feasible set being a reunion 
of disjoint sets like in (17)–(18). Since writing the portfolio model as a linear optimization model is 
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straightforward (only some replacements in the notation have to be done, e.g., ja~  is replaced by jR , 

nj ,1= ) we omit it and, in the sequel, we refer to (16)-(18) as the portfolio model. The problem (16)–(18) 
can be solved by direct search following the steps: 1) Initialization; 2) Checking the feasibility of the current 
point; 3) Checking if the value of the objective function corresponding to the current iteration is superior to 
the previous one; 4) Testing for the stopping criteria; 5) Stopping, or performing a search for finding the next 
current point, incrementing the index and continuing the algorithm from Step 2. On the other hand, we can 
also consider four linear programming models and use the simplex algorithm for them. The simplex 
algorithm provides always an exact output (a unique optimal solution, multiple solutions or no solution) for 
all four problems, as opposed to the approximate solution given by the direct search method. Therefore, we 
consider the four linear programming models  

( ) ( ) ( ) ( )1 8 2 7 3 6 4 5
1

1max 4 15 18 11
96i

n

j j j j j j j j j
j

l r l r l r l r x
∈Γ

=

 + + + + + + + ∑x
 (23)

( 4,1=i ), each of the feasible sets being defined in (17), respectively, (18).  The performed simulations on 
portfolios made of securities listed at the Bucharest Stock Exchange showed the effectiveness of our method. 

5. CONCLUSIONS 

In this work we propose a type of fuzzy numbers called superior-LR-piecewise (s-LR), we investigate 
their properties and we present and discussed a chance-constraint type optimization model with fuzzy 
constraints and objective function expressed through the possibilistic mean value. This generalizes some 
previous models in literature which only used trapezoidal fuzzy numbers. Compared with the classical 
approach based on trapezoidal numbers, our approach provides substantial benefits: using the theoretical 
results obtained in this paper, the portfolio optimization problem can be transformed into a special fuzzy 
optimization model and moreover, into a set of crisp linear optimization problems which can be solved by 
classical means such as the simplex algorithm. Practical applications of our model and method are numerous, 
particularly where in mathematical language is necessary to introduce a subjective point of view. But the 
fuzzy approach do not replace but rather complements probabilistic methods. The model discussed is open to 
such mixed approaches and to develop it is one of our future directions of research. 
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