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Recursive matrix relations for kinematics of a three-prismatic-revolute-cylindrical (3-PRC) parallel 
kinematic machine (PKM) are established in this paper. Knowing the translational motion of the 
platform, we develop the inverse kinematical problem and determine the positions, velocities and 
accelerations of the robot’s elements. . Finally, compact matrix equations and graphs of simulation for 
displacements, velocities and accelerations of each of three legs are obtained. 
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LIST OF SYMBOLS 

1, −kka , 1, −kkb , 1, −kkc  – orthogonal transformation matrices 

321 ,, uuu  – three right-handed orthogonal unit vectors 

2 3l r=  – length of the side of moving platform 
θ  – angle of inclination of three sliders 

A
10λ , B

10λ , C
10λ  – displacements of three prismatic actuators 

1, −kkϕ  – relative rotation angle of kT rigid body 

1, −kkω  – relative angular velocity of kT  

0kω  – absolute angular velocity of kT  

1,
~

−kkω  – skew-symmetric matrix associated to the angular velocity 1, −kkω  

1, −kkε  – relative angular acceleration of kT  

0kε  – absolute angular acceleration of kT  

1,
~

−kkε  – skew-symmetric matrix associated to the angular acceleration 1, −kkε  

1. INTRODUCTION 

The research activities on parallel mechanisms have recently gained greater attention for engineers 
within the robotic community as their advantages become better known. Parallel kinematic machines (PKM) 
are closed-loop structures presenting very good potential in terms of accuracy, rigidity and ability to 
manipulate large loads. In general, these mechanisms consist of two main bodies coupled via numerous legs 
acting in parallel. One body is designated as fixed and is called base, while the other is regarded as movable 
and hence is called moving platform of the manipulator. The number of actuators is typically equal to the 
number of degrees of freedom such that each leg is controlled at or near the fixed base [1]. 
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Compared with traditional serial manipulators, the followings are the potential advantages of parallel 
architectures: higher kinematical accuracy, lighter weight and better structural rigidity, stable capacity and 
suitable position of arrangement of actuators, low manufacturing cost and better payload carrying ability. 
But, from an application point of view, a limited workspace and complicated singularities are two major 
drawbacks of parallel manipulators. Thus, it is more suitable for situations where high precision, stiffness, 
velocity and heavy load-carrying are required within a restricted workspace [2]. 

Most three DOF mechanisms exist in one of three of following classes: spherical, translational or 
spatial. A translation device is capable of moving in Cartesian coordinates and is suitable for pick-and-place 
applications. Spherical mechanisms are strictly for pointing applications such as orienting a camera. The 
final class is the class of spatial mechanisms, which include a combination of both rotational and 
translational degrees of freedom. 

Over the past two decades, parallel manipulators have received more attention from researches and 
industries. Important companies such as Giddings & Lewis, Ingersoll, Hexel and others have developed them 
as high precision machine tools. Accuracy and precision in the direction of the tasks are essential since the 
positioning errors of the tool could end in costly damage. Considerable efforts have been devoted to the 
kinematics and dynamic investigations of fully parallel manipulators. Among these, the class of manipulators 
known as Stewart-Gough platform focused great attention (Stewart [3]; Di Gregorio and Parenti Castelli [4]). 
They are used in flight simulators and more recently for PKMs. The prototype of Delta parallel robot (Clavel 
[5]; Tsai and Stamper [6]; Staicu [7]); developed by Clavel at the Federal Polytechnic Institute of Lausanne 
and by Tsai and Stamper at the University of Maryland as well as the Star parallel manipulator (Hervé and 
Sparacino [8], Staicu [9]) are equipped with three motors, which train on the mobile platform in a three-
degree-of-freedom general translation motion. Angeles [10], Wang and Gosselin [11], Staicu [12] analysed 
the kinematics, dynamics and singularity loci of Agile Wrist spherical robot with three actuators. 

In the present paper, a recursive matrix method, already implemented in the inverse kinematics of 
parallel robots, is applied to the analysis of the spatial three-degrees-of-freedom mechanism. It has been 
proved to reduce the number of equations and computation operations significantly by using a set of matrices 
for kinematics modelling. 

2. KINEMATICS ANALYSIS  

In the previous works of Li and Xu [13], [14], the 3-PRS parallel manipulator and the 3-PRC PKM 
with relative simple structure was presented with its kinematics problems solved in details. The potential 
application as a positioning device of the tool in a new parallel kinematics machine for high precision 
blasting attracted a scientific and practical interest to this manipulator type/ 

Having a closed-loop structure, the spatial 3-PRC parallel kinematic machine is a special symmetrical 
mechanism composed of three kinematical chains with identical topology, all connecting the fixed base to 
the moving platform (Fig. 1). Each limb connects the moving platform to the base by a prismatic joint, axe of 
which being inclined from the base platform, a revolute joint and a passive cylindrical joint in sequence, 
where the prismatic joints are driven by three linear actuators assembled to the fixed base. Since the 
kinematics and mobility problems have already resolved, we only review some matrix useful results below 
which provide a base for the dynamic modelling. The manipulator consists of the upper fixed base and the 
moving platform 333 CBA  that are two equilateral triangles with L  and 32rl =  the lengths of the sides, 
respectively. Overall, there are seven moving links, three prismatic joints, three revolute joints and three 
cylindrical joints. Grübler mobility equation predicts that the device has certainly three degrees of freedom. 

In the configuration )( RCP with all actuators installed on the fixed base, we consider the moving 
platform as the output link and the sliders 1A , 1B , 1C as the input links (Fig. 2). Having a common point of 
intersection O , the lines of action of each of three prismatic joints may be inclined from the fixed base by a 
constant angle θ  as architectural parameter. These rails and the revolute joint axes are mutually 
perpendicular. Finally, the passive revolute joint of each leg is separated from the cylindrical joint 
connecting the platform’s edge by a fixed-length limb. In this configuration, any translation along the 
vertical axis is limited by the constraints and therefore only finite displacements along this axis are obtained. 
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Fig. 1 – Virtual prototype for the 3-PRC PKM. 

For the purpose of analysis, a Cartesian frame 0 0 0 0( )Ox y z T  is attached to the fixed base with its origin 
located just at the common point O  of three rails, the 0z axis perpendicular to the base. Another mobile 
reference frame G G GGx y z  is attached to the moving platform. The origin of this coordinate central system is 
fixed at the centre G of the moving triangle. The kinematical constraints of each leg limit the absolute 
motion of cylindrical joint of each limb to a plane perpendicular to the axis of the revolute joint and 
containing the rail. In the symmetrical version of the manipulator, the first leg A is typically contained within 
the 0 0Ox z  vertical plane, whereas the remaining two legs ,B C  make angles 0 0120 , 120B Cα = α = −  

respectively, with the first leg. It is noted that the relative rotation with , 1k k−ϕ  angle or relative translation of 

kT  body with , 1k k−λ  displacement must be always pointing about or along the direction of kz  axis. 
In what follows we consider that the moving platform is initially located at a central configuration, 

where the platform is not translated with respect to the fixed base and the origin O  of fixed frame is located 
at an elevation OG h=  above the mass centre G . A complete description of the absolute position of the 
translational moving platform with respect to the reference frame requires generally three variables: the 
coordinates 0 0 0, ,G G Gx y z  of the mass center G . 

One of three active legs (for example leg A ) consists of a prismatic joint linked at the AAA zyxA 1111  

moving frame, having a translation with the displacement 10
Aλ , the velocity 10 10

A Av = λ  and the acceleration 

10 10
A Aγ = λ . An intermediate link of length 2 3 2A A l=  has a relative rotation about 2

Az  axis with the angle 

21
Aϕ , the angular velocity 21 21

A Aω = ϕ  and the angular acceleration 21 21
A Aε = ϕ . Finally, a cylindrical joint is 

introduced at the edge of a planar moving platform, which is schematised as an equilateral triangle. 
At the central configuration, we also consider that the three sliders are initially starting from same 

position 1 1 2cos sin sin( )OA l r h l= = θ − θ + θ + β  and that the angles of orientation of the legs are given by  

6
π

θ = , 
2 20, ,
3 3A B C
π π

α = α = α = − , 2 cos( ) sin cosl r hθ + β = θ + θ . (1)
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Fig. 2 – Kinematical scheme of first leg A  of upside-down mechanism. 

In the followings, we apply the method of successive displacements to geometric analysis of closed-
loop chains So, starting from the reference origin O  and pursuing the independent legs 1 2 3OA A A , 1 2 3OB B B , 

1 2 3OC C C , we obtain following transformation matrices 

T
10 1 21 21 1 2,ip a a p p aϕ

θ α βθ= θ = θ θ , 20 21 10p p p= ( , , , , )p a b c i A B C= = , (2)

where we denote [15]: 
cos sin 0
sin cos 0

0 0 1

i i
i

i iaα

α α 
 = − α α 
  

, 
cos( ) sin( ) 0
sin( ) cos( ) 0

0 0 1
aβθ

θ + β θ + β 
 = − θ + β θ + β 
  

, 
cos 0 sin

0 1 0
sin 0 cos

aθ

θ − θ 
 =  
 θ θ 

, 

           
21 21

21 21 21

cos sin 0

sin cos 0
0 0 1

i i

i ipϕ

 ϕ ϕ
 

= − ϕ ϕ 
 
  

, 1

0 0 1
0 1 0
1 0 0

− 
 θ =  
  

, 2

0 1 0
1 0 0

0 0 1

 
 θ = − 
  

.   

(3)

Three independent displacements 10
Aλ , 10

Bλ , 10
Cλ  of the active links are the joint variables that give the 

input vector T
10 10 10 10[ ]BA Cλ = λ λ λ  of the instantaneous pose of the mechanism. But, in the inverse 

geometric problem, it can be considered that the position of the mechanism is completely given through the 
coordinate GGG zyx 000 ,,  of the mass centre G . Further, we suppose that following three analytical functions 
can describe a helical translation of the moving platform [16]: 
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0 1 2sin( ) cos( )Gx d t t= ω ω , 0 1 2sin( ) sin( )Gy d t t= ω ω , )]cos(1[ 10 tedhzG ω−+= ,     (4)

where 1 2 10.5, 0.5, , 3
2

d e π
= = ω = ω = ω , t is the time variable in unit of second and Gx0 , Gy0 , Gz0 are the 

coordinates of the centre G  in units of meters.  
Nine independent variables 10 21 32, ,A AA Aλ ϕ λ , 10 21 32, ,B B Bλ ϕ λ , 10 21 32, ,C C Cλ ϕ λ  will be determined by several 

vector-loop equations as follows 

3

2 2 2

10 0 1 10 0 1, 10 0 1 G 0
1 1 1

3 3A B CA T A B T B C T C G
k k ,k G k k k G k k ,k

k k k

r a r r r b r r r c r r r+ + +
= = =

+ − = + − = + − =∑ ∑ ∑ , (5)

where 
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[ cos sin sin cos 0] ( , , ).

i i i i

i i i
G i i i i

r l p u r r l u

r r r i A B C

= + λ = = −

= α − λ α α − λ α =
 

(6)

Actually, these vector equations mean that there is only one inverse geometric solution for the spatial 
manipulator: 

2 21 0 0 0cos( ) ( cos sin ) sin cosi G G G
i il r x y zϕ + θ + β = + α + α θ + θ , 

10 2 21 0 0 0 1sin( ) ( cos sin ) cos sini i G G G
i il r x y z lλ = ϕ + θ + β + + α + α θ − θ − , 

32 0 0sin cosi G G
i ix yλ = α − α . 

(7)

Now, we develop the inverse kinematics problem and determine the velocities and accelerations of the 
robot, supposing that the motion of the moving platform is known. The motion of the compounding elements 
of the leg A , for example, are characterized by the velocities of joints 

10 10 3 21 20 21 10, 0,A A A A Av u v v a v= λ = =  (8)

and by following angular velocities 

10 20 21 21 30,A A A A uω = ω = ω = ϕ , (9)

which are associated to skew-symmetric matrices 

10 20 21 21 30,A A A A uω = ω = ω = ϕ . (10)

Vector equations of geometrical constraints (5) can be differentiated with respect to time to obtain the 
following significant matrix conditions of connectivity [17] 

10
Av 10 3

T T
ju a u 21 20 3 32

A T T A
ju a u r+ω − 32 2

A T AT
jv u a uα 0

T G
ju r=   ( 1, 2, 3)j = . (11)

If the other two kinematical chains of the robot are pursued, analogous relations can be easily obtained. 
From these equations, we obtain the complete Jacobian matrix of the manipulator. This matrix is 
fundamental element for the analysis of the robot workspace and the particular configurations of singularities 
where the spatial manipulator becomes uncontrollable [18]. 

Rearranging, above constraint equations (7) can immediately written as 
2 2 2

0 0 0 10 1 0 0 0 2[( cos sin ) sin cos ] [ ( cos sin ) cos sin ]
( , , ).

G G G i G G G
i i i ir x y z l r x y z l

i A B C
+ α + α θ + θ + λ + − + α + α θ + θ =

=
(12)
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The derivative with respect to time of conditions (12) leads to the matrix equation 

T
1 10 2 0 0 0[ ]G G GJ J x y zλ = , (13)

where the matrices 1J  and 2J  are, respectively, the inverse and forward Jacobian of the manipulator 

1 diag { }A B CJ = δ δ δ ,
1 2 3

2 1 2 3

1 2 3

A A A

B B B

C C C

J

 β β β
 

= β β β 
 β β β  

, (14)

with the notations 

21sin( )i
iδ = ϕ + θ + β  

1 21sin( )cosi i
iβ = ϕ +β α , 2 21sin( )sini i

iβ = ϕ + β α , 3 21cos( )i iβ = − ϕ + β   

( , , )i A B C= . 
(15)

The three kinds of singularities of the three closed-loop kinematical chains can be determined through the 
analysis of two Jacobian matrices 1J  and 2J  [19, 20]. 

 
Fig. 3 – Displacements 10

iλ  of three sliders.                                            Fig. 4 – Velocities 10
iv  of three sliders. 

As for the linear accelerations 10 32,A Aγ γ  and the angular acceleration 21
Aε  of first leg A , the derivatives 

with respect to time of the equations (11) give other conditions of connectivity  

10
Aγ T T

10 3ju a u T T
21 20 3 32
A A

ju a u r+ε − T T
32 2
A A

ju a uαγ T
0
G

ju r= T T
21 21 20 3 3 32
A A A

ju a u u r−ω ω   ( 1, 2, 3)j = .            (16)

Following relations give the angular accelerations 0
A
kε  and the accelerations 0

A
kγ  of joints kA  

10 20 21 21 30,A A A A uε = ε = ε = ϕ ,    10 10 3 21 20 21 10, 0,A A A A Au aγ = λ γ = γ = γ . (1/)

As application let us consider a 3-PRC PKM which has the following characteristics 

2

2 1 2
2

0.152m, 0.400m, 0.1612m, , 2 3, 2s,
6

cos( ) sin cos , cos sin sin( ),

9.807ms .

r l h l r t

l r h l r h l

g −

π
= = = θ = = ∆ =

θ + β = θ + θ = θ − θ + θ + β

=

 

Using the MATLAB software, a computer program was developed to solve the inverse kinematics of 
the 3-PRC parallel manipulator. To develop the algorithm, it is assumed that the platform starts at rest from a 
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central configuration and moves pursuing a helical translation. The time-history for displacements 10
iλ   

(Fig. 3), velocities 10
iv  (Fig. 4), accelerations 10

iγ  (Fig. 5), angles of rotation 21
iϕ  (Fig. 6), angular velocities 

21
iω  (Fig. 7) and angular accelerations 10

iε  (Fig. 8) of three legs is illustrated for a period of 2t∆ =  second in 
terms of given analytical equations (4).   

    
Fig. 5 – Accelerations 10

iγ  of three sliders.                                              Fig. 6 – Rotation angles 21
iϕ  of three legs. 

    
Fig. 7 – Angular velocities 21

iω  of three legs.                                       Fig. 8 – Angular accelerations 21
iε  of three legs. 

3. CONCLUSIONS 

Within the inverse kinematics analysis some exact relations that give in real-time the position, velocity 
and acceleration of each element of the parallel robot have been established in the present paper. The 
simulation through the program certify that one of the major advantages of the current matrix recursive 
formulation is accuracy and a reduced number of additions or multiplications and consequently a smaller 
processing time of numerical computation. 

Choosing appropriate serial kinematical circuits connecting many moving platforms, the present method 
can easily be applied in forward and inverse mechanics of various types of parallel mechanisms, complex 
manipulators of higher degrees of freedom and particularly hybrid structures, when the number of 
components of the mechanisms is increased. 
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