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Let ,A B  be two unital ternary C*-algebras. We prove that every almost unital almost linear mapping 
:h A B→   which satisfies ( )[ ] [ ( ) ( ) ( )]3 3 3 3n n n nh u vy h u h v h yA B= for all , ( )u v U A∈ , all  y A∈ , and 

all 0,1,2,...n = , is a ternary homomorphism. Also, for a unital ternary *C -algebra A of real rank 
zero, every almost unital almost linear continuous mapping :h A B→   is a ternary homomorphism 
when ( )[ ] [ ( ) ( ) ( )]3 3 3 3n n n nh u vy h u h v h yA B=  holds for all 1, ( )u v I Asa∈ , all y A∈ , and all 

0,1,2,...n = . Furthermore, we investigate the Hyers-Ulam-Rassias stability of ternary 
homomorphisms between unital ternary C*-algebras. 

Key words:  Ternary homomorphism, Ternary  C*-algebra. 

1. INTRODUCTION 

Ternary algebraic operations were considered in the 19th century by several mathematicians and 
physicists such as Cayley [5] who introduced the notions of cubic matrix, which in turn ([1,7,23,24,33,35]) 
was generalized by Kapranov at al. [22]. 

 Following the terminology of Ref. [8], a nonempty set G with a ternary operation GG →3:[.,.,.]  is 
called a ternary groupoid and is denoted by [.,.,.]).,(G  The ternary groupoid [.,.,.]).,(G  is called 
commutative if (1) (2) (3)1 2 3[ , , ] [ ]x x x x x xσ σ σ=  for all 1 2 3, ,x x x G∈  and all permutations σ  of }3,2,1{ . If a binary 
operation  is defined on G such that [ ] zyxzyx )(,, = for all Gzyx ∈,, , then we say that [.,.,.]  is derived 
from . 

We say that [.,.,.]),(G  is a ternary semigroup if the operation [.,.,.]  is associative, i.e., if 
]],,[,,[]],,,[,[],],,,[[ vuzyxvuzyxvuzyx ==  holds for all Gvuzyx ∈,,,,  (see Ref. [2, 3, 13]).  

A C*-ternary algebra is a complex Banach space A , equipped with a ternary produc  
),,(),,( ZYXZYX  of 3A  into A , which is C -linear in the outer variables, conjugate C-linear in the 

middle variable, and associative in the sense that ],],,,[[]],,,[,[]],,[,,[ vwzyxvyzwxvwzyx ==  and satisfies 

[ ] zyxzyx ..,, ≤ and [ ] 3, ,x x x x= . If a  C*-ternary algebra [.,.,.]),(A  has an identity, i.e., an element 

Ae∈  such that ],,[],,[ xeeeexx ==  for all Ax∈ , then it is routine to verify that A , endowed with 

],,[: yexxoy =  and ],,[:* exex = , is a unital C*-algebra. Conversely, if ),( oA is a unital  C*-algebra, then 

[ ] ozyxozyx *:,, =  makes A into a  C*-ternary algebra. A C-linear mapping BAH →: is called a C*-ternary 
algebra homomorphism if  

)](),(),[]),,([ zHyHHxzyxH = , 
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for all Azyx ∈,, . Ternary structures and their generalization the so-called n-ary structures, raise certain hops 
in view of their applications in physics [2, 10, 13, 23, 36].  

The study of stability problems originated from a famous talk given by S. M. Ulam [34] in 1940: 
“under what condition does there exist a homomorphism near an approximate homomorphism?” In the next 
year 1941, D. H. Hyers [15] answered affirmatively the question of Ulam. This stability phenomenon is 
called the Hyers-Ulam stability of the additive functional equation )()()( ygxgyxg +=+ . A generalized 
version of the theorem of Hyers for approximately linear mappings was given by Th.M. Rassias [32]. 

The stability phenomenon that was introduced and proved by Th. M. Rassias is called Hyers-Ulam-
Rassias stability. The stability problems of several functional equations have been extensively investigated 
by a number of authors and there are many interesting results concerning this problem [6,9,11,12,14–
18,20,27–31]. 

Throughout this paper, let A  be a unital ternary C*-algebra with unit e , and B  a unital ternary Banach 
algebra with unit element eB .  Let )(AU  be the set of unitary elements in A , *: { }sa x A x xA = ∈ = , and  

)}(,1{)(1 AInvvvAvAI sasa ∈=∈= .  In this paper, we prove that every almost unital almost linear 

mapping BAh →: is a homomorphism when )]()3()3([)]33[( yhvhuhvyuh nnnn
BA = for all )(, AUvu ∈ , 

all Ay∈ , and all 0, 1, 2,...n = . Also, for a unital ternary *C -algebra A  of real rank zero, every almost 
unital almost linear continuous mapping BAh →:  is a ternary homomorphism when 

)]()3()3([)]33[( yhvhuhvyuh nnnn
BA =  holds for all )(, 1 AIvu sa∈ , all Ay∈ , and all 0, 1, 2,...n = . 

Furthermore, we investigate the Hyers-Ulam-Rassias stability of ternary *-homomorphisms between unital 
ternary *C -algebras. Note that a unital ternary C*-algebra is of real rank zero, if the set of invertible self-adjoint 
elements is dense in the set of self-adjoint elements [4]. We denote the algebraic center of A  by )(AZ . 

2. TERNARY HOMOMORPHISMS ON UNITAL TERNARY C*-ALGEBRAS 

Following the same approach as in [26], we obtain the next theorem. 
 Theorem 2.1. Let BAf →:  be a mapping such that 0)0( =f  and that 

)]()3()3([)]33[( yvffufvyuf nnnn
BA = ,  (2.1)

for all )(, AUvu ∈ , all Ay∈ , and all ,...2,1,0=n . Assume as well that there exists a function 

( ) [ )2: {0} 0,Aφ − → ∞  such that  
0

( , ) ( , )3 3 3n n n

n

x y x y
∞

−

=

φ = φ < ∞∑  for all }0{, −∈ Ayx    and that  

2 ( ) ( ) ( ) ( , )
2

x yf f x f y x yµ + µ
−µ −µ ≤ φ   (2.2)

for all Tµ∈ and all Ayx ∈, . If )()(
3

)3(lim 1 BZBI
ef

san

n

n
∩∈ , then the mapping BAf →: is a ternary  

homomorphism.  
 Proof. Set 1µ =  in (2.2), it follows from Theorem 1 of [19] that there exists a unique additive mapping 

BAh →:  such that  

( )1( ) ( ) ( , ) ( ,3 )
3

f x h x x x x x− ≤ φ − + φ −   (2.3)

for all }0{−∈ Ax . This mapping is given by  
3

)3(lim)( n

n

n

xfxh =  for all Ax∈ . By the same reasoning as in 

the proof of Theorem 1 of [26], h is C-linear. It follows from (2.1) that 
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)]()()([
9

)]()3()3([
lim

9

)]33[(
lim)][( yfvhuh

yfvfufvyuf
uvyh Bn

B
nn

A
n

A
nnnn

=== ,  (2.4)

for all )(, AUvu ∈ , all Ay∈ .  

 Since h  is additive, then by (2.4), we have )]3()()([)]3([()][(3 yfvhuhyuvhuvyh nn
BAA

n ==  for all 

)(, AUvu ∈  and all Ay∈ . 
 Hence, 

)]()()([]
3

)3()()([lim)][( yhvhuhyfvhuhuvyh B
Bn

A n
n

==   (2.5)

for all )(, AUvu ∈ and all Ay∈ . By the assumption, we have )(
3

)3(lim)( BUefeh n

n

n
∈= hence, it follows by 

(2.4) and (2.5) that )]()()([)][()]()()([ yfeheheeyhyheheh BAB == for all Ay∈ . We denote the unit element 
of  B  by eB . Since )(eh  belongs to )(1 BI sa , then 

11

1 1

1 1

1 1

( ) [ ( )] [ ( )][ ( )] [ ( ) ][ ( )] ( )( )

[ ( )] ][ ( )] [ ( ) ( )]( ) [ ( )

[ ( )] [ ( ) ( )][ ( )] ]( ) [ ( )

[ ([ [ ( )]( ) ( )

h y h y h yh e h eh y h eh e ee e ee e BB B BB B B B BB B

h yh e h e h yh e h e ee e eBB B BB BB B
h e h e h yh yh e h ee e eeB B BBB BB B
h eh eh e h ee eB B B B B

−−

− −

− −

− −

= = = =

= = =

= = =

= 1 1

11 11

1 1

) ( )] ] [ ]( ) [ ]( ) [ ( ) ( ) ( )]

( ) ( )][ ][ ] [[ ( )]( )( ) ( )[ ]( ) [ ( ) ( ) ( )]

1[ ( )] [ ( ) ( )][ ( )] [ ]( ) ( ) [ ( ) ][ ( )]( )

h y h e h e h e h e h ye eB B B B B
h e f yh eh eh e h eh e h e h e f y ee ee BB BB B BB BB B

h e h e f yh yh e h e h e f ye e e h ee e eB B BB B BB B BB B B

− −

−− −−

− −

= =

= = =

−= = = =

= 1 ( )] [ ( )][[ ( )]( )

( ), for all . 

f y f yh eh e e e ee B B BB BB B
f y y A

− = =

= ∈

      

          We have to show that f is a ternary homomorphism. For every  Aba ∈, , we define .][: aebba A=◊  
Then  AAA →×◊ :  is a binary product for which ),( ◊A  may be considered as a (binary) C*-algebra. Also, 
we have [ ] ),( AAUa∈  if and only if  )),(( ◊∈ AUa  for all Aa∈ . Now, let Aba ∈, . By Theorem 4.1.7 of [21],  

ba,  are finite linear combinations of unitary elements, i.e., ))(,,,(,
11

AUvuCdcvdbuca jijij
m

j
ji

n

i
i ∈∈∑=∑=

==
, it 

follows from (2.5) that  

1 1

1 1 1 1

1 1 1 1

1 1

[( )( ) ])([ ) ( ) (] [ ] d

[ ][ ]d d

[ ] [ ( ) ( ) ( )]( )d d

[ ( ) ( ) ( )d

n m

i j

n m n m

i j i j

n m n m

i j i j

n m

i j

yf h haby aby c u vi i j jA A A

yu vh y hc u v c i ji j i j i j AA

h h h yh u v u vc ci j i ji j i jA B

h h h yc u vi j i j
B

= =

= = = =

= = = =

= =

= = =∑ ∑

   = = =∑ ∑ ∑ ∑   
   

= = =∑ ∑ ∑ ∑

= ∑ ∑
1 1

] ) ( ) ( )][ ( d

, for all  . [ ( ) ( ) ( )]

n m

i j
h h yh c u vi i j j

B
y Ah a h b h y B

= =
= =∑ ∑

= ∈
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This completes the proof of theorem. 
 Corollary 2.2. Let (0,1), [0, )p∈ θ∈ ∞   be real numbers. Let BAf →:  be a mapping such that 

0)0( =f  and that  

)]()3()3([)]33[( yvffufvyuf nnnn
BA =  

for all )(, AUvu ∈ , all Ay∈ , and all ,...2,1,0=n  . Suppose that  

2 ( ) ( ) ( ) ( )
2

p px yf f x f y x y
µ + µ

−µ −µ ≤ θ +  

for all Tµ∈   and all Ayx ∈, . If )(
3

)3(lim 1 BI
ef

san

n

n
∈ , then the mapping BAf →:  is a ternary 

homomorphism. 
 Proof. Set ( )( , ) : p px y x yφ = +  all Ayx ∈, . Then by Theorem 2.1 we get the desired result. 

 Theorem 2.3. Let A  be a ternary C*-algebra of real rank zero. Let BAf →:  be a continuous 
mapping such that 0)0( =f  and that 

)]()3()3([)]33[( yvffufvyuf nnnn
BA =   (2.6)

for all )(, 1 AIvu sa∈  all Ay∈ , and all ,...2,1,0=n . Suppose that there exists a function 

( ) [ )2: {0} 0,Aφ − → ∞  satisfying (2.2) and ( , )x yφ < ∞  for all }0{, −∈ Ayx . If )(
3

)3(lim 1 BI
ef

san

n

n
∈ , then 

the mapping BAf →:  is a ternary homomorphism. 
 Proof. By the same reasoning as in the proof of Theorem 2.1, there exists a unique C-linear mapping 

BAh →:  satisfying (2.3). It follows from (2.6) that  

)]()()([
9

)]()3()3([
lim

9

)]33[(
lim)][( yfvhuh

yfvfufvyuf
uvyh Bn

B
nn

A
n

A
nnnn

===   (2.7)

for all )(, 1 AIvu sa∈ , and all Ay∈ . By additivity of  h  and (2.7), we obtain that   

)]3()()([)]3([()][(3 yfvhuhyuvhuvyh nn
BAA

n == , for all )(, 1 AIvu sa∈  and all Ay∈ . 

 Hence, 

)]()()([]
3

)3()()([lim)][( yhvhuhyfvhuhuvyh B
Bn

A n
n

== , for all )(, 1 AIvu sa∈ ) and all Ay∈ .  (2.8)

 By the assumption, we have  

)(
3

)3(lim)( BUefeh n

n

n
∈= . 

Similar to the proof of Theorem 2.1, it follows from (2.7) and (2.8) that fh =  on A . So h  is 
continuous. On the other hand A  is real rank zero. One can easily show that )(1 AI sa  is dense in 

}1:{ =∈ xAx sa . Let }1:{, =∈∈ xAxvu sa  There are }{},{ zt nn  in )(1 AI sa  such that 
,lim lim nn

n n
u vt z= = . Since h  is continuous, it follows from (2.8) that 

)]()()([)]()()([lim))](([lim))(lim()][( yhvhuhyhzhthyzthyzthuvyh BB
n

A
n

nn
n

A nnnn ==== ,  (2.9)
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for all Ay∈ . Now, let Aba ∈, . Then we have  1 2 1 2i , ia ba a b b= + = + ,  where 
* *

1 1: , :
2 2

a ba ba b
+ +

= =   

and  
* *

2 2: , :
2 2

a ba bba i i
− −

= =   are self-adjoint. First consider 2 2 0a b= = , 1 1, 0a b ≠ . Since h  is C-linear, it 

follows from (2.9) that  

( ) ( ) 1 1
1 1

1 1
[ ]( )[ ] [ ] 1 1A A A

A

a byf h h h yaby aby a b a b
a b

  
 = = =      

= 

1 1 1 1
1 1 1 1

1 1 1 1
( )

A B

a b a bh y h h h ya b a b
a b a b

        
 = =                     

= 

( ) ( ) ( ) ( ) ( )1 1
1 1 1 1

1 1
( ) ( )

B B
B

a bh h h y h h h y f a f b f ya b a b
a b

    
   = = =                

,  for all Ay∈ . 

 
 Now, consider 11 0a b= = , 2 2, 0a b ≠ . Since h  is C-linear, it follows from (2.9) that 

[ ]( ) [ ]( ) [ ]( ) 2 2
2 22 2

2 2
A A A

A

a bf aby h aby h ia ib y h ya b
a b

  
 = = = −      

= 

2 2 2 2
2 2 2 2

2 2 2 2
( )

A B

a b a bh y h h h ya b a b
a b a b

        
 = − = −                     

= 

( ) ( ) ( )2 2
2 2 2 2

2 2
( )

B
B

a bh i h i h y h h i h ya b ia b
a b

    
 = =              

=                             

( ) ( ) ( )
B

f a f b f y =   ,      for all Ay∈ .   

 Suppose 2 1 0a b= = , 1 2, 0a b ≠ . Then by (2.9), we have 

[ ]( ) [ ]( ) ( )( ) 1 2
1 2 1 2

1 2
A A A

A

a bf aby h aby h i y h i ya b a b
a b

  
  = = =        

= 

1 2 1 2
1 2 1 2

1 2 1 2
( )

A B

a b a bi h y i h h h ya b a b
a b a b

        
 = =                     

= 

[ ]1 2
1 2 1 2

1 2
( ) ( ) ( ) ( ) B

B

a bh h i h y h h i h ya b a b
a b

    
= =            

=       

( ) ( ) ( )
B

f a f b f y =     ,     for all Ay∈ . 

 Similarly we can show that 

[ ]( ) ( ) ( ) ( )A B
f aby f a f b f y =   , 

for all Ay∈  if 1 2 0a b= = , 12, 0a b ≠ . In the case that 2 1 2 10, , , 0b a a b= ≠ , we have  

[ ]( ) [ ]( ) [ ]( ) [ ]( ) [ ]( )1 2 1 1 1 2 1( )A A A A Af aby h aby h a ia b y h a b y ih a b y= = + = + = 

1 1 2 1
1 1 2 1

1 1 2 1A A

a b a bh y ih ya b a b
a b a b

      
   = +               

= 
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1 1 2 1
1 1 2 1

1 1 2 1A A

a b a bh y i h ya b a b
a b a b

      
   = +               

= 

( ) ( )1 1 2 1
1 1 2 1

1 1 2 1B B

a b a bh h h y i h h h ya b a b
a b a b

          
= +                              

= 

( ) ( )1 1 2 1
1 1 2 1

1 1 2 1B B

a b a bh h h y i h h h ya b a b
a b a b

          
= +                              

= 

[ ] ( ) ( ) ( ) ( ) ( )( )1 1 2 1 1 2 1( ) ( ) ( ) B B B
h h h y i h a h b h y h a ia h b h ya b   = + = +    = 

( ) ( ) ( )
B

f a f b f y =   ,                for all Ay∈ . 

 By a same reasoning above, we can show that 

[ ]( ) ( ) ( ) ( )A B
f aby f a f b f y =    

for all Ay∈  if  2 1 1 20, , , 0a a b b= ≠ . Now consider 1 1 2 20, , , 0b a a b= ≠ . Then by (2.9), we have 

[ ]( ) [ ]( ) ( )( )( ) [ ]( ) [ ]( )1 2 2 1 2 2 2A A A AA
f aby h aby h a ia ib y h ia b y h a b y = = + = −  = 

1 2 2 2
1 2 2 2

1 2 2 2A A

a b a bih y h ya b a b
a b a b

      
   = −               

= 

1 2 2 2
1 2 2 2

1 2 2 2A A

a b a bi h y h ya b a b
a b a b

      
   = −               

 =                                

( )1 2 2 2
1 2 2 2

1 2 2 2
( )

B B

a b a bi h h h y h h h ya b a b
a b a b

          
= −                              

= 

( ) ( )2 2 21
2 2 21

2 2 21 B B

a b a bh a ih h y ih ih h yb a b
a b a b

          
= +                              

= 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 21 2 2 2B B B
h a ih b h y ih a ih b h y h i h i h ya a b     = + = +      =                 

( ) ( ) ( )
B

f a f b f y =   ,           for all Ay∈ . 

 (2.10)

 Also, by a same reasoning, we can see that 

[ ]( ) [ ]( ) ( ) ( )
A B

f aby f a f b f y= ,       for all Ay∈  if  1 2 1 20, , , 0a a b b= ≠ .   

 Finally consider that 1 2 1 2, , , 0a a b b ≠ . Then by (2.9), we have 

[ ]( ) [ ]( ) ( )( )( )1 2 1 2A A A
f aby h aby h a ia b ib y = = + +  = 

[ ]( ) [ ]( ) [ ]( ) [ ]( )1 1 1 2 2 1 2 2A A A A
h a b y h ia b y h ia b y h ia b y= + + − = 

1 1 1 2
1 1 1 2

1 1 1 2A A

a b a bh y ih ya b a b
a b a b

      
   = +               

2 1
2 2

2 1 A

a bih ya b
a b

  
 +      

2 2
2 2

2 2 A

a bh ya b
a b

  
 −      

= 

1 1 1 2
1 1 1 2

1 1 1 2A A

a b a bh y i h ya b a b
a b a b

      
   = + +               
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+ 2 1 2 2
2 1 2 2

2 1 2 2A A

a b a bi h y h ya b a b
a b a b

      
   −               

= 

( ) ( )1 1 1 2
1 1 1 2

1 1 1 2B B

a b a bh h h y i h h h ya b a b
a b a b

          
= +                              

+ 

( ) ( )2 1 2 2
2 1 2 2

2 1 2 2B B

a b a bi h h h y h h h ya b a b
a b a b

          
+ −                              

= 

( ) ( )1 1 1 2
1 1 1 2

1 1 1 2B B

a b a bh h h y h ih h ya b a b
a b a b

          
= +                              

+ 

( ) ( )2 1 2 2
2 1 2 2

2 1 2 2B B

a b a bih h h y ih ih h ya b a b
a b a b

          
+ +                              

= 

[ ] [ ]1 1 1 2( ) ( ) ( ) ( ) ( ) ( )B Bh h h y h ih h ya b a b= + [ ] [ ]2 1 2 2( ) ( ) ( ) ( ) ( ) ( )B Bih h h y ih ih h ya b a b+ + =                    

[ ]1 2 1 2( ) ( ) ( ) Bh i h i h ya a b b= + + [ ]( ) ( ) ( ) Bf a f b f y= ,     for all Ay∈ . 

 Hence, )]()()([)][( yfbfafabyf BA =  for all Ayba ∈,,  and f is ternary homomorphism.                                         
 Corollary 2.4. Let A  be a ternary  C*-algebra of real rank zero. Let ),0[),1,0( ∞∈∈ θp be real 
numbers. Let BAf →:  be a mapping such that 0)0( =f   and that 

)]()3()3([)]33[( yvffufvyuf nnnn
BA =   (2.11)

for all )(, 1 AIvu sa∈ , all Ay∈ , and all ,...2,1,0=n  . Suppose that 

2 ( ) ( )
2

p px yf f x f y x y
µ + µ   − µ −µ ≤ θ +     

 

for all Tµ∈ and all Ayx ∈, . If )(
3

)3(lim BUef
n

n

n
∈ , then the mapping BAf →:  is a ternary 

homomorphism. 

 Proof. Set  ( , ) :
p p

x y x y φ = + 
 

 for all Ayx ∈, . Then by Theorem 2.3 we get the desired result. 
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