TERNARY HOMOMORPHISMS BETWEEN UNITAL TERNARY C^{*}-ALGEBRAS

M. ESHAGHI GORDJI* ${ }^{*}$, Th. M. RASSIAS**
* Department of Mathematics, Semnan University, P. O. Box 35195-363, Semnan, Iran
${ }^{* *}$ Department of Mathematics, National Technical University of Athens, Zografou, Campus 15780 Athens, Greece
E-mail: madjid.eshaghi@gmail.com

Abstract

Let A, B be two unital ternary C^{*}-algebras. We prove that every almost unital almost linear mapping $h: A \rightarrow B$ which satisfies $h\left(\left[3^{n} u 3^{n} n_{v y}\right]_{A}\right)=\left[h\left(3^{n} u\right) h\left(3^{n} v\right) h(y)\right]_{B}$ for all $u, v \in U(A)$, all $y \in A$, and all $n=0,1,2, \ldots$, is a ternary homomorphism. Also, for a unital ternary C^{*}-algebra A of real rank zero, every almost unital almost linear continuous mapping $h: A \rightarrow B$ is a ternary homomorphism when $h\left(\left[3^{n} u 3^{n} v y\right]_{A}\right)=\left[h\left(3^{n} u\right) h\left(3^{n} v\right) h(y)\right]_{B}$ holds for all $u, v \in I_{1}\left(A_{s a}\right)$, all $y \in A$, and all $n=0,1,2, \ldots$. Furthermore, we investigate the Hyers-Ulam-Rassias stability of ternary homomorphisms between unital ternary C^{*}-algebras.

Key words: Ternary homomorphism, Ternary C^{*}-algebra.

1. INTRODUCTION

Ternary algebraic operations were considered in the 19th century by several mathematicians and physicists such as Cayley [5] who introduced the notions of cubic matrix, which in turn ([1,7,23,24,33,35]) was generalized by Kapranov at al. [22].

Following the terminology of Ref. [8], a nonempty set G with a ternary operation[.,.,.]: $G^{3} \rightarrow G$ is called a ternary groupoid and is denoted by ($G,[\ldots, \ldots$,$]). The ternary groupoid (G,[, \ldots, \ldots$). is called commutative if $\left[x_{1}, x_{2}, x_{3}\right]=\left[x_{\sigma(1)} x_{\sigma(2)} x_{\sigma(3)}\right]$ for all $x_{1}, x_{2}, x_{3} \in G$ and all permutations σ of $\{1,2,3\}$. If a binary operation \circ is defined on G such that $[x, y, z]=(x \circ y) \circ z$ for all $x, y, z \in G$, then we say that $[., .,$.$] is derived$ from \circ.

We say that $(G,[.,, .]$,$) is a ternary semigroup if the operation [.,.,.] is associative, i.e., if$ $[[x, y, z], u, v]=[x,[y, z, u], v]=[x, y,[z, u, v]]$ holds for all $x, y, z, u, v \in G$ (see Ref. $[2,3,13])$.

A C^{*}-ternary algebra is a complex Banach space A, equipped with a ternary produc $(X, Y, Z) \mapsto(X, Y, Z)$ of A^{3} into A, which is C-linear in the outer variables, conjugate C-linear in the middle variable, and associative in the sense that $[x, y,[z, w, v]]=[x,[w, z, y], v]=[[x, y, z], w, v]$ and satisfies $\|[x, y, z]\| \leq\|x\|\|\cdot\| y\| \| \|$ and $\|[x, x, x]\|=\|x\|^{3}$. If a C^{*}-ternary algebra $(A,[\ldots,,]$.$) has an identity, i.e., an element$ $e \in A$ such that $x=[x, e, e]=[e, e, x]$ for all $x \in A$, then it is routine to verify that A, endowed with $x o y:=[x, e, y]$ and $x^{*}:=[e, x, e]$, is a unital C^{*}-algebra. Conversely, if (A, o) is a unital C^{*}-algebra, then $[x, y, z]:=x o y^{*}$ oz makes A into a C^{*}-ternary algebra. A C-linear mapping $H: A \rightarrow B$ is called a C^{*}-ternary algebra homomorphism if

$$
H([x, y, z])=[H x), H(y), H(z)]
$$

for all $x, y, z \in A$. Ternary structures and their generalization the so-called n -ary structures, raise certain hops in view of their applications in physics [2, 10, 13, 23, 36].

The study of stability problems originated from a famous talk given by S. M. Ulam [34] in 1940: "under what condition does there exist a homomorphism near an approximate homomorphism?" In the next year 1941, D. H. Hyers [15] answered affirmatively the question of Ulam. This stability phenomenon is called the Hyers-Ulam stability of the additive functional equation $g(x+y)=g(x)+g(y)$. A generalized version of the theorem of Hyers for approximately linear mappings was given by Th.M. Rassias [32].

The stability phenomenon that was introduced and proved by Th. M. Rassias is called Hyers-UlamRassias stability. The stability problems of several functional equations have been extensively investigated by a number of authors and there are many interesting results concerning this problem [6,9,11,12,14-18,20,27-31].

Throughout this paper, let A be a unital ternary C^{*}-algebra with unit e, and B a unital ternary Banach algebra with unit element e_{B}. Let $U(A)$ be the set of unitary elements in $A, A_{s a}:=\left\{x \in A \mid x=x^{*}\right\}$, and $I_{1}\left(A_{s a}\right)=\left\{v \in A_{s a}\|v\|=1, v \in \operatorname{Inv}(A)\right\}$. In this paper, we prove that every almost unital almost linear mapping $h: A \rightarrow B$ is a homomorphism when $h\left(\left[3^{n} u 3^{n} v y\right]_{A}\right)=\left[h\left(3^{n} u\right) h\left(3^{n} v\right) h(y)\right]_{B}$ for all $u, v \in U(A)$, all $y \in A$, and all $n=0,1,2, \ldots$. Also, for a unital ternary C^{*}-algebra A of real rank zero, every almost unital almost linear continuous mapping $h: A \rightarrow B$ is a ternary homomorphism when $h\left(\left[3^{n} n_{u} n_{v y]_{A}}\right)=\left[h\left(3^{n_{u}}\right) h\left(3^{n} v\right) h(y)\right]_{B}\right.$ holds for all $u, v \in I_{1}\left(A_{s a}\right)$, all $y \in A$, and all $n=0,1,2, \ldots$. Furthermore, we investigate the Hyers-Ulam-Rassias stability of ternary *-homomorphisms between unital ternary C^{*}-algebras. Note that a unital ternary C^{*}-algebra is of real rank zero, if the set of invertible self-adjoint elements is dense in the set of self-adjoint elements [4]. We denote the algebraic center of A by $Z(A)$.

2. TERNARY HOMOMORPHISMS ON UNITAL TERNARY C^{*}-ALGEBRAS

Following the same approach as in [26], we obtain the next theorem.
Theorem 2.1. Let $f: A \rightarrow B$ be a mapping such that $f(0)=0$ and that

$$
\begin{equation*}
f\left(\left[3^{n} u 3^{n} n_{v y}\right]_{A}\right)=\left[f\left(3^{n} u\right) f\left(3^{n}\right) v f(y)\right]_{B}, \tag{2.1}
\end{equation*}
$$

for all $u, v \in U(A)$, all $y \in A$, and all $n=0,1,2, \ldots$. Assume as well that there exists a function $\phi:(A-\{0\})^{2} \rightarrow[0, \infty)$ such that $\tilde{\phi}(x, y)=\sum_{n=0}^{\infty} 3^{-n} \phi\left(3^{n} x, 3^{n} y\right)<\infty$ for all $x, y \in A-\{0\}$ and that

$$
\begin{equation*}
\left\|2 f\left(\frac{\mu x+\mu y}{2}\right)-\mu f(x)-\mu f(y)\right\| \leq \phi(x, y) \tag{2.2}
\end{equation*}
$$

for all $\mu \in T$ and all $x, y \in A$. If $\lim _{n} \frac{f\left(3^{n} e\right)}{3^{n}} \in I_{1}\left(B_{s a}\right) \cap Z(B)$, then the mapping $f: A \rightarrow B$ is a ternary homomorphism.

Proof. Set $\mu=1$ in (2.2), it follows from Theorem 1 of [19] that there exists a unique additive mapping $h: A \rightarrow B$ such that

$$
\begin{equation*}
\|f(x)-h(x)\| \leq \frac{1}{3}(\tilde{\phi}(x,-x)+\tilde{\phi}(-x, 3 x)) \tag{2.3}
\end{equation*}
$$

for all $x \in A-\{0\}$. This mapping is given by $h(x)=\lim _{n} \frac{f\left(3^{n} x\right)}{3^{n}}$ for all $x \in A$. By the same reasoning as in the proof of Theorem 1 of [26], h is C-linear. It follows from (2.1) that

$$
\begin{equation*}
h\left([u v y]_{A}\right)=\lim _{n} \frac{f\left(\left[3^{n} u 3^{n} n_{v y}\right]_{A}\right)}{9^{n}}=\lim _{n} \frac{\left[f\left(3^{n} u\right) f\left(3^{n}\right) f(y)\right]_{B}}{9^{n}}=[h(u) h(v) f(y)]_{B}, \tag{2.4}
\end{equation*}
$$

for all $u, v \in U(A)$, all $y \in A$.
Since h is additive, then by (2.4), we have $3^{n} h\left([u v y]_{A}\right)=h\left(\left[u v\left(3^{n} y\right)\right]_{A}=\left[h(u) h(v) f\left(3^{n} y\right)\right]_{B}\right.$ for all $u, v \in U(A)$ and all $y \in A$.

Hence,

$$
\begin{equation*}
h\left([u v y]_{A}\right)=\lim _{n}\left[h(u) h(v) \frac{f\left(3^{n} y\right)}{3^{n}}\right]_{B}=[h(u) h(v) h(y)]_{B} \tag{2.5}
\end{equation*}
$$

for all $u, v \in U(A)$ and all $y \in A$. By the assumption, we have $h(e)=\lim _{n} \frac{f\left(3^{n} e\right)}{3^{n}} \in U(B)$ hence, it follows by (2.4) and (2.5) that $[h(e) h(e) h(y)]_{B}=h\left([e e y]_{A}\right)=[h(e) h(e) f(y)]_{B}$ for all $y \in A$. We denote the unit element of B by e_{B}. Since $h(e)$ belongs to $I_{1}\left(B_{S a}\right)$, then

$$
\begin{gathered}
h(y)=\left[e_{B} e_{B} h(y)\right]_{B}=\left[\left[h(e)^{-1} e_{B}^{\left.h(e)]_{B} e_{B} h(y)\right]_{B}=\left[h(e)^{-1}\left[e_{B} h(e)_{e_{B}}\right]_{B} h(y)\right]_{B}=}\right.\right. \\
=\left[h(e)^{-1}\left[e_{B} e_{B} h(e)\right]_{B} h(y)\right]_{B}=\left[h(e)^{-1} e_{B}\left[e_{B} h(e) h(y)\right]_{B}\right]_{B}= \\
=\left[h(e)^{-1}\left[e_{B} e_{B} h(e)\right]_{B} h(y)\right]_{B}=\left[h(e)^{-1} e_{B}\left[e_{B} h(e) h(y)\right]_{B}\right]_{B}= \\
=\left[h(e)^{-1} e_{B}\left[\left[h(e)^{-1} e_{B} h(e)\right]_{B} h(e) h(y)\right]_{B}\right]_{B}=\left[h(e)^{-1} e_{B}\left[h(e)^{-1} e_{B}[h(e) h(e) h(y)]_{B}\right]_{B}\right]_{B}= \\
=\left[h(e)^{-1} e_{B}\left[h(e)^{-1} e_{B}[h(e) h(e) f(y)]_{B}\right]_{B}\right]_{B}=\left[h(e)^{-1} e_{B}\left[\left[h(e)^{-1} e_{B} h(e)\right]_{B} h(e) f(y)\right]_{B}\right]_{B}= \\
=\left[h(e)^{-1}\left[e_{B} e_{B} h(e)\right]_{B} h(y)\right]_{B}=\left[h(e)^{-1} e_{B}\left[e_{B} h(e) f(y)\right]_{B}\right]_{B}=\left[h(e)^{-1}\left[e_{B} h(e)_{e}\right]_{B} f(y)\right]_{B}= \\
=\left[\left[h(e)^{-1} e_{B} h(e)\right]_{B} e_{B} f(y)\right]_{B}=\left[e_{B} e_{B} f(y)\right]_{B}= \\
=f(y), \quad \text { for all } y \in A .
\end{gathered}
$$

We have to show that f is a ternary homomorphism. For every $a, b \in A$, we define $a \diamond b:=[a e b]_{A}$. Then $\diamond: A \times A \rightarrow A$ is a binary product for which (A, \diamond) may be considered as a (binary) C^{*}-algebra. Also, we have $a \in U\left(A,[]_{A}\right)$ if and only if $a \in U((A, \diamond))$ for all $a \in A$. Now, let $a, b \in A$. By Theorem 4.1.7 of [21], a, b are finite linear combinations of unitary elements, i.e., $a=\sum_{i=1}^{n} c_{i} u_{i}, b=\sum_{j=1}^{m} d_{j} v_{j}\left(c_{i}, d_{j} \in C, u_{i}, v_{j} \in U(A)\right)$, it follows from (2.5) that

$$
\begin{gathered}
f\left([a b y]_{A}\right)=h\left([a b y]_{A}\right)=h\left(\left[\left(\sum_{i=1}^{n} c_{i} u_{i}\right)\left(\sum_{j=1}^{m} \mathrm{~d}_{j} v_{j}\right) y\right]\right)_{A}= \\
=h\left(\left[\sum_{i=1}^{n} \sum_{j=1}^{m} c_{i} \mathrm{~d}_{j} u_{i} v_{j} y\right]_{A}\right)=h\left(\sum_{i=1}^{n} \sum_{j=1}^{m} c_{i} \mathrm{~d}_{j}\left[u_{i} v_{j} y\right]_{A}\right)= \\
=\sum_{i=1}^{n} \sum_{j=1}^{m} c_{i} \mathrm{~d}_{j} h\left(\left[u_{i} v_{j}\right]_{A}\right)=\sum_{i=1}^{n} \sum_{j=1}^{m} c_{i} \mathrm{~d}_{j}\left[h\left(u_{i}\right) h\left(v_{j}\right) h(y)\right]_{B}= \\
=\left[\sum_{i=1}^{n} \sum_{j=1}^{m} c_{i} \mathrm{~d}_{j} h\left(u_{i}\right) h\left(v_{j}\right) h(y)\right]_{B}=\left[h\left(\sum_{i=1}^{n} c_{i} u_{i}\right) h\left(\sum_{j=1}^{m} \mathrm{~d}_{j} v_{j}\right) h(y)\right]_{B}= \\
=[h(a) h(b) h(y)]_{B}, \text { for all } y \in A .
\end{gathered}
$$

This completes the proof of theorem.
Corollary 2.2. Let $p \in(0,1), \theta \in[0, \infty)$ be real numbers. Let $f: A \rightarrow B$ be a mapping such that $f(0)=0$ and that

$$
f\left(\left[3^{n} u 3^{n} v y\right]_{A}\right)=\left[f\left(3^{n} u\right) f\left(3^{n}\right) v f(y)\right]_{B}
$$

for all $u, v \in U(A)$, all $y \in A$, and all $n=0,1,2, \ldots$. Suppose that

$$
\left\|2 f\left(\frac{\mu x+\mu y}{2}\right)-\mu f(x)-\mu f(y)\right\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}\right)
$$

for all $\mu \in T$ and all $x, y \in A$. If $\lim _{n} \frac{f\left(3^{n} e\right)}{3^{n}} \in I_{1}\left(B_{s a}\right)$, then the mapping $f: A \rightarrow B$ is a ternary homomorphism.

Proof. Set $\phi(x, y):=\left(\|x\|^{p}+\|y\|^{p}\right)$ all $x, y \in A$. Then by Theorem 2.1 we get the desired result.
Theorem 2.3. Let A be a ternary C^{*}-algebra of real rank zero. Let $f: A \rightarrow B$ be a continuous mapping such that $f(0)=0$ and that

$$
\begin{equation*}
f\left(\left[3^{n} u 3^{n} n_{v y}\right]_{A}\right)=\left[f\left(3^{n} u\right) f\left(3^{n}\right) v f(y)\right]_{B} \tag{2.6}
\end{equation*}
$$

for all $u, v \in I_{1}\left(A_{S a}\right)$ all $y \in A$, and all $n=0,1,2, \ldots$. Suppose that there exists a function $\phi:(A-\{0\})^{2} \rightarrow[0, \infty)$ satisfying (2.2) and $\tilde{\phi}(x, y)<\infty$ for all $x, y \in A-\{0\}$. If $\lim _{n} \frac{f\left(3^{n} e\right)}{3^{n}} \in I_{1}\left(B_{s a}\right)$, then the mapping $f: A \rightarrow B$ is a ternary homomorphism.

Proof. By the same reasoning as in the proof of Theorem 2.1, there exists a unique C-linear mapping $h: A \rightarrow B$ satisfying (2.3). It follows from (2.6) that

$$
\begin{equation*}
h\left([u v y]_{A}\right)=\lim _{n} \frac{f\left(\left[3^{n} u 3^{n} v y\right]_{A}\right)}{9^{n}}=\lim _{n} \frac{\left[f\left(3^{n} u\right) f\left(3^{n} v\right) f(y)\right]_{B}}{9^{n}}=[h(u) h(v) f(y)]_{B} \tag{2.7}
\end{equation*}
$$

for all $u, v \in I_{1}\left(A_{s a}\right)$, and all $y \in A$. By additivity of h and (2.7), we obtain that

$$
3^{n} h\left([u v y]_{A}\right)=h\left(\left[u v\left(3^{n} y\right)\right]_{A}=\left[h(u) h(v) f\left(3^{n} y\right)\right]_{B}, \text { for all } u, v \in I_{1}\left(A_{S a}\right) \text { and all } y \in A\right.
$$

Hence,

$$
\begin{equation*}
h\left([u v y]_{A}\right)=\lim _{n}\left[h(u) h(v) \frac{f\left(3^{n} y\right)}{\left.3^{n}\right]_{B}}=[h(u) h(v) h(y)]_{B}, \text { for all } u, v \in I_{1}\left(A_{s a}\right)\right) \text { and all } y \in A \tag{2.8}
\end{equation*}
$$

By the assumption, we have

$$
h(e)=\lim _{n} \frac{f\left(3^{n} e\right)}{3^{n}} \in U(B)
$$

Similar to the proof of Theorem 2.1, it follows from (2.7) and (2.8) that $h=f$ on A. So h is continuous. On the other hand A is real rank zero. One can easily show that $I_{1}\left(A_{S a}\right)$ is dense in $\left\{x \in A_{S a}:\|x\|=1\right\}$. Let $u, v \in\left\{x \in A_{S a}:\|x\|=1\right\}$ There are $\left\{t_{n}\right\},\left\{z_{n}\right\}$ in $I_{1}\left(A_{s a}\right)$ such that $\lim _{n} t_{n}=u, \lim _{n} z_{n}=v$. Since h is continuous, it follows from (2.8) that

$$
\begin{equation*}
h\left([u v y]_{A}\right)=h\left(\lim _{n}\left(t_{n} z_{n} y\right)\right)=\lim _{n} h\left(\left[\left(t_{n} z n y\right)\right]_{A}\right)=\lim _{n}\left[h\left(t_{n}\right) h\left(z_{n}\right) h(y)\right]_{B}=[h(u) h(v) h(y)]_{B} \tag{2.9}
\end{equation*}
$$

for all $y \in A$. Now, let $a, b \in A$. Then we have $a=a_{1}+\mathrm{i}_{a_{2}}, b=b_{1}+\mathrm{i} b_{2}$, where $a_{1}:=\frac{a+a^{*}}{2}, b_{1}:=\frac{b+b^{*}}{2}$ and $a_{2}:=\frac{a-a^{*}}{2 i}, b_{2}:=\frac{b-b^{*}}{2 i}$ are self-adjoint. First consider $a_{2}=b_{2}=0, a_{1}, b_{1} \neq 0$. Since h is C-linear, it follows from (2.9) that

$$
\begin{gathered}
f\left([a b y]_{A}\right)=h\left([a b y]_{A}\right)=h\left(\left[a_{1} b_{1} y\right]_{A}\right)=h\left(\left\|a_{1}\right\|\left\|b_{1}\right\|\left[\frac{a_{1}}{\left\|a_{1}\right\|} \frac{b_{1}}{\left\|b_{1}\right\|} y\right]_{A}\right)= \\
=\left\|a_{1}\right\|\left\|b_{1}\right\| h\left(\left[\frac{a_{1}}{\left\|a_{1}\right\|} \frac{b_{1}}{\left\|b_{1}\right\|} y\right]_{A}\right)=\left\|a_{1}\right\|\left\|b_{1}\right\|\left[h\left(\frac{a_{1}}{\left\|a_{1}\right\|}\right) h\left(\frac{b_{1}}{\left\|b_{1}\right\|}\right) h(y)\right]_{B}= \\
=\left[h\left(\left\|a_{1}\right\| \frac{a_{1}}{\left\|a_{1}\right\|}\right) h\left(\left\|b_{1}\right\| \frac{b_{1}}{\left\|b_{1}\right\|}\right) h(y)\right]_{B}=\left[h\left(a_{1}\right) h\left(b_{1}\right) h(y)\right]_{B}=[f(a) f(b) f(y)]_{B}, \text { for all } y \in A .
\end{gathered}
$$

Now, consider $a_{1}=b_{1}=0, a_{2}, b_{2} \neq 0$. Since h is C-linear, it follows from (2.9) that

$$
\begin{gathered}
f\left([a b y]_{A}\right)=h\left(\left[a a_{2}\right]_{A}\right)=h\left(\left[i a_{2} i_{2} y\right]_{A}\right)=-h\left(\left\|a_{2}\right\|\left\|b_{2}\right\|\left[\frac{a_{2}}{\left\|a_{2}\right\|} \frac{b_{2}}{\left\|b_{2}\right\|} y\right]_{A}\right)= \\
=-\left\|a_{2}\right\|\left\|b_{2}\right\| h\left(\left[\frac{a_{2}}{\left\|a_{2}\right\|} \frac{b_{2}}{\left\|b_{2}\right\|} y\right]_{A}\right)=-\left\|a_{2}\right\|\left\|b_{2}\right\|\left[h\left(\frac{a_{2}}{\left\|a_{2}\right\|}\right) h\left(\frac{b_{2}}{\left\|b_{2}\right\|}\right) h(y)\right]_{B}= \\
=\left[h\left(i\left\|a_{2}\right\| \frac{a_{2}}{\left\|a_{2}\right\|}\right) h\left(i\left\|b_{2}\right\| \frac{b_{2}}{\left\|b_{2}\right\|}\right) h(y)\right]_{B}=\left[h\left(i a_{2}\right) h\left(i b_{2}\right) h(y)\right]_{B}= \\
=[f(a) f(b) f(y)]_{B}, \quad \text { for all } y \in A .
\end{gathered}
$$

Suppose $a_{2}=b_{1}=0, a_{1}, b_{2} \neq 0$. Then by (2.9), we have

$$
\begin{gathered}
f([a b y])_{A}=h([a b y])_{A}=h\left(\left[a_{1}\left(i b_{2}\right) y\right]_{A}\right)=h\left(i\left\|a_{1}\right\|\left\|b_{2}\right\|\left[\frac{a_{1}}{\left\|a_{1}\right\|} \frac{b_{2}}{\left\|b_{2}\right\|} y\right]_{A}\right)= \\
=i\left\|a_{1}\right\|\left\|b_{2}\right\| h\left(\left[\frac{a_{1}}{\left\|a_{1}\right\|} \frac{b_{2}}{\left\|b_{2}\right\|} y\right]_{A}\right)=i\left\|a_{1}\right\| b_{2} \|\left[h\left(\frac{a_{1}}{\left\|a_{1}\right\|}\right) h\left(\frac{b_{2}}{\left\|b_{2}\right\|}\right) h(y)\right]_{B}= \\
=\left[h\left(\left\|a_{1}\right\| \frac{a_{1}}{\left\|a_{1}\right\|}\right) h\left(i\left\|b_{2}\right\| \frac{b_{2}}{\left\|b_{2}\right\|}\right) h(y)\right]_{B}=\left[h\left(a_{1}\right) h\left(i b_{2}\right) h(y)\right]_{B}= \\
=[f(a) f(b) f(y)]_{B}, \quad \text { for all } y \in A .
\end{gathered}
$$

Similarly we can show that

$$
f\left([a b y]_{A}\right)=[f(a) f(b) f(y)]_{B},
$$

for all $y \in A$ if $a_{1}=b_{2}=0, a_{2}, b_{1} \neq 0$. In the case that $b_{2}=0, a_{1}, a_{2}, b_{1} \neq 0$, we have

$$
\begin{gathered}
f\left([a b y]_{A}\right)=h\left([a b y]_{A}\right)=h\left(\left[\left(a_{1}+i a_{2}\right) b_{1} y\right]_{A}\right)=h\left(\left[a_{1} b_{1} y\right]_{A}\right)+i h\left(\left[a_{2} b_{1} y\right]_{A}\right)= \\
=h\left(\left\|a_{1}\right\|\left\|b_{1}\right\|\left[\frac{a_{1}}{\left\|a_{1}\right\|} \frac{b_{1}}{\left\|b_{1}\right\|} y\right]_{A}\right)+i h\left(\left\|a_{2}\right\|\left\|b_{1}\right\|\left[\frac{a_{2}}{\left\|a_{2}\right\|} \frac{b_{1}}{\left\|b_{1}\right\|} y\right]_{A}\right)=
\end{gathered}
$$

$$
\begin{gathered}
=\left\|a_{1}\right\| b_{1}\left\|h\left(\left[\frac{a_{1}}{\left\|a_{1}\right\|} \frac{b_{1}}{\left\|b_{1}\right\|} y\right]_{A}\right)+i\right\| a_{2}\| \| b_{1} \| h\left(\left[\frac{a_{2}}{\left\|a_{2}\right\|} \frac{b_{1}}{\left\|b_{1}\right\|} y\right]_{A}\right)= \\
=\left\|a_{1}\right\|\left\|b_{1}\right\|\left[h\left(\frac{a_{1}}{\left\|a_{1}\right\|}\right) h\left(\frac{b_{1}}{\left\|b_{1}\right\|}\right) h(y)\right]_{B}+i\left\|a_{2}\right\|\left\|b_{1}\right\|\left[h\left(\frac{a_{2}}{\left\|a_{2}\right\|}\right) h\left(\frac{b_{1}}{\left\|b_{1}\right\|}\right) h(y)\right]_{B}= \\
=\left[h\left(\left\|a_{1}\right\| \frac{a_{1}}{\left\|a_{1}\right\|}\right) h\left(\left\|b_{1}\right\| \frac{b_{1}}{\left\|b_{1}\right\|}\right) h(y)\right]_{B}+i\left[h\left(\left\|a_{2}\right\| \frac{a_{2}}{\left\|a_{2}\right\|}\right) h\left(\left\|b_{1}\right\| \frac{b_{1}}{\left\|b_{1}\right\|}\right) h(y)\right]_{B}= \\
=\left[h\left(a_{1}\right) h\left(b_{1}\right) h(y)\right]_{B}+i\left[h\left(a_{2}\right) h\left(b_{1}\right) h(y)\right]_{B}=\left[h\left(a_{1}+i a_{2} h\left(b_{1}\right) h(y)\right)\right]_{B}= \\
=[f(a) f(b) f(y)]_{B}, \quad \text { for all } y \in A .
\end{gathered}
$$

By a same reasoning above, we can show that

$$
f\left([a b y]_{A}\right)=[f(a) f(b) f(y)]_{B}
$$

for all $y \in A$ if $a_{2}=0, a_{1}, b_{1}, b_{2} \neq 0$. Now consider $b_{1}=0, a_{1}, a_{2}, b_{2} \neq 0$. Then by (2.9), we have

$$
\begin{gather*}
f\left([a b y]_{A}\right)=h\left([a b y]_{A}\right)=h\left(\left[\left(a_{1}+i a_{2}\right)\left(i b_{2}\right) y\right]_{A}\right)=h\left(\left[i a_{1} b_{2} y\right]_{A}\right)-h\left(\left[a_{2} b_{2} y\right]_{A}\right)= \\
=i h\left(\left\|a_{1}\right\|\left\|b_{2}\right\|\left[\frac{a_{1}}{\left\|a_{1}\right\|} \frac{b_{2}}{\left\|b_{2}\right\|} y\right]_{A}\right)-h\left(\left\|a_{2}\right\|\left\|b_{2}\right\|\left[\frac{a_{2}}{\left\|a_{2}\right\|} \frac{b_{2}}{\left\|b_{2}\right\|} y\right]_{A}\right)= \\
=i\left\|a_{1}\right\|\left\|b_{2}\right\| h\left(\left[\frac{a_{1}}{\left\|a_{1}\right\|} \frac{b_{2}}{\left\|b_{2}\right\|} y\right]_{A}\right)-\left\|a_{2}\right\|\left\|b_{2}\right\| h\left(\left[\frac{a_{2}}{\left\|a_{2}\right\|} \frac{b_{2}}{\left\|b_{2}\right\|} y\right]_{A}\right)= \\
=i\left\|a_{1}\right\|\left\|b_{2}\right\|\left[h\left(\frac{a_{1}}{\left\|a_{1}\right\|}\right) h\left(\frac{b_{2}}{\left\|b_{2}\right\|}\right) h(y)\right]_{B}-\left\|a_{2}\right\|\left\|b_{2}\right\|\left[h\left(\frac{a_{2}}{\left\|a_{2}\right\|}\right) h\left(\frac{b_{2}}{\left\|b_{2}\right\|}\right) h(y)\right]_{B}= \tag{2.10}\\
=\left[h\left(\left\|a_{1}\right\| \frac{a_{1}}{\left\|a_{1}\right\|}\right) \text { ih }\left(\left\|b_{2}\right\| \frac{b_{2}}{\left\|b_{2}\right\|}\right) h(y)\right]_{B}+\left[i h\left(\left\|a_{2}\right\| \frac{a_{2}}{\left\|a_{2}\right\|}\right) i h\left(\left\|b_{2}\right\| \frac{b_{2}}{\left\|b_{2}\right\|}\right) h(y)\right]_{B}= \\
=\left[h\left(a_{1}\right) i h\left(b_{2}\right) h(y)\right]_{B}+\left[i h\left(a_{2}\right) i h\left(b_{2}\right) h(y)\right]_{B}=\left[h\left(a_{1}+i_{a_{2}}\right) h\left(i b_{2}\right) h(y)\right]_{B}= \\
=[f(a) f(b) f(y)]_{B}, \quad \text { for all } y \in A .
\end{gather*}
$$

Also, by a same reasoning, we can see that

$$
f\left([a b y]_{A}\right)=[f(a) f(b) f(y)]_{B}, \quad \text { for all } y \in A \text { if } a_{1}=0, a_{2}, b_{1}, b_{2} \neq 0 .
$$

Finally consider that $a_{1}, a_{2}, b_{1}, b_{2} \neq 0$. Then by (2.9), we have

$$
\begin{aligned}
& f\left([a b y]_{A}\right)=h\left([a b y]_{A}\right)=h\left(\left[\left(a_{1}+i a_{2}\right)\left(b_{1}+i b_{2}\right) y\right]_{A}\right)= \\
& =h\left(\left[a_{1} b_{1} y\right]_{A}\right)+h\left(\left[i a_{1} b_{2} y\right]_{A}\right)+h\left(\left[i a_{2} b_{1} y\right]_{A}\right)-h\left(\left[i a_{2} b_{2} y\right]_{A}\right)= \\
& \left.\left.=h\left(\left\|a_{1}\right\|\left\|b_{1}\right\|\left[\frac{a_{1}}{\left\|a_{1}\right\|} \| \frac{b_{1}}{\left\|b_{1}\right\|} y\right]_{A}\right)+i h\left(\left\|a_{1}\right\|\left\|b_{2}\right\|\left[\frac{a_{1}}{\left\|a_{1}\right\|} \| \frac{b_{2}}{\left\|b_{2}\right\|} y\right]_{A}\right)+i h\left(\left\|a_{2}\right\|\left\|b_{2}\right\| \frac{a_{2}}{\left\|a_{2}\right\|} \frac{b_{1}}{\left\|b_{1}\right\|} y\right]_{A}\right)-h\left(\left\|a_{2}\right\|\left\|b_{2}\right\| \frac{a_{2}}{\left\|a_{2}\right\|} \frac{b_{2}}{\left\|b_{2}\right\|} y\right]_{A}\right)= \\
& =\left\|a_{1}\right\|\left\|b_{1}\right\| h\left(\left[\frac{a_{1}}{\left\|a_{1}\right\|}\left\|b_{1}\right\| b_{1} \|\right]_{A}\right)+i\left\|a_{1}\right\|\left\|b_{2}\right\| h\left(\left[\frac{a_{1}}{\left\|a_{1}\right\|} \frac{b_{2}}{\left\|b_{2}\right\|} y\right]_{A}\right)+
\end{aligned}
$$

$$
\begin{gathered}
+i\left\|a_{2}\right\|\left\|b_{1}\right\| h\left(\left[\frac{a_{2}}{\left\|a_{2}\right\|} \frac{b_{1}}{\left\|b_{1}\right\|} y\right]_{A}\right)-\left\|a_{2}\right\|\left\|b_{2}\right\| h\left(\left[\frac{a_{2}}{\left\|a_{2}\right\|} \frac{b_{2}}{\left\|b_{2}\right\|} y\right]_{A}\right)= \\
=\left\|a_{1}\right\|\left\|b_{1}\right\|\left[h\left(\frac{a_{1}}{\left\|a_{1}\right\|}\right) h\left(\frac{b_{1}}{\left\|b_{1}\right\|}\right) h(y)\right]_{B}+i\left\|a_{1}\right\|\left\|b_{2}\right\|\left[h\left(\frac{a_{1}}{\left\|a_{1}\right\|}\right) h\left(\frac{b_{2}}{\left\|b_{2}\right\|}\right) h(y)\right]_{B}+ \\
+i\left\|a_{2}\right\|\left\|b_{1}\right\|\left[h\left(\frac{a_{2}}{\left\|a_{2}\right\|}\right) h\left(\frac{b_{1}}{\left\|b_{1}\right\|}\right) h(y)\right]_{B}-\left\|a_{2}\right\|\left\|b_{2}\right\|\left[h\left(\frac{a_{2}}{\left\|a_{2}\right\|}\right) h\left(\frac{b_{2}}{\left\|b_{2}\right\|}\right) h(y)\right]_{B}= \\
=\left[h\left(\left\|a_{1}\right\| \frac{a_{1}}{\left\|a_{1}\right\|}\right) h\left(\left\|b_{1}\right\| \frac{b_{1}}{\left\|b_{1}\right\|}\right) h(y)\right]_{B}+\left[h\left(\left\|a_{1}\right\| \frac{a_{1}}{\left\|a_{1}\right\|}\right) i h\left(\left\|b_{2}\right\| \frac{b_{2}}{\left\|b_{2}\right\|}\right) h(y)\right]_{B}+ \\
+\left[i h\left(\left\|a_{2}\right\| \frac{a_{2}}{\left\|a_{2}\right\|}\right) h\left(\left\|b_{1}\right\| \frac{b_{1}}{\left\|b_{1}\right\|}\right) h(y)\right]_{B}+\left[i h\left(\left\|a_{2}\right\| \frac{a_{2}}{\left\|a_{2}\right\|}\right) i h\left(\left\|b_{2}\right\| \frac{b_{2}}{\left\|b_{2}\right\|}\right) h(y)\right]_{B}= \\
=\left[h\left(a_{1}\right) h\left(b_{1}\right) h(y)\right]_{B}+\left[h\left(a_{1}\right) i h\left(b_{2}\right) h(y)\right]_{B}+\left[i h\left(a_{2}\right) h\left(b_{1}\right) h(y)\right]_{B}+\left[i h\left(a_{2}\right) i h\left(b_{2}\right) h(y)\right]_{B}= \\
=\left[h\left(a_{1}+i a_{2}\right) h\left(b_{1}+i b_{2}\right) h(y)\right]_{B}=[f(a) f(b) f(y)]_{B}, \quad \text { for all } y \in A .
\end{gathered}
$$

Hence, $f\left([a b y]_{A}\right)=[f(a) f(b) f(y)]_{B}$ for all $a, b, y \in A$ and f is ternary homomorphism.
Corollary 2.4. Let A be a ternary C^{*}-algebra of real rank zero. Let $p \in(0,1), \theta \in[0, \infty)$ be real numbers. Let $f: A \rightarrow B$ be a mapping such that $f(0)=0$ and that

$$
\begin{equation*}
f\left(\left[3^{n} u 3^{n} n_{v y}\right]_{A}\right)=\left[f\left(3^{n} u\right) f\left(3^{n}\right) v f(y)\right]_{B} \tag{2.11}
\end{equation*}
$$

for all $u, v \in I_{1}\left(A_{s a}\right)$, all $y \in A$, and all $n=0,1,2, \ldots$. Suppose that

$$
\left\|2 f\left(\frac{\mu x+\mu y}{2}\right)-\mu f(x)-\mu f(y)\right\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}\right)
$$

for all $\mu \in T$ and all $x, y \in A$. If $\lim _{n} \frac{f\left(3^{n} e\right)}{3^{n}} \in U(B)$, then the mapping $f: A \rightarrow B$ is a ternary homomorphism.

Proof. Set $\phi(x, y):=\left(\|x\|^{p}+\|y\|^{p}\right)$ for all $x, y \in A$. Then by Theorem 2.3 we get the desired result.

REFERENCES

1. V. Abramov, R. Kerner and B. Le Roy, Hypersymmetry a Z_{3} graded generalization of supersymmetry, J. Math. Phys., 38, 1650, 1997.
2. F. Bagarello, G. Morchio, Dynamics of mean-field spin models from basic results in abstract differential equations, J. Stat. Phys., 66, 849-866, 1992.
3. N. Bazunova, A. Borowiec and R. Kerner, Universal differential calculus on ternary algebras, Lett. Math. Phys., 67, 195, 2004.
4. L. Brown and G. Pedersen, C^{*}-algebras of real rank zero, J. Funct. Anal., 99, 131.149, 1991.
5. A. Cayley, On the 34 concomitants of the ternary cubic, Am. J. Math., 4, 1, 1881.
6. S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific Publishing Company, Singapore, New Jersey, London, 2002.
7. Y. L. Daletskii and L. A. Takhtajan, Leibniz and Lie algebra structures for Nambu algebra, Lett. Math. Phys., 39, 127, 1997.
8. S. Duplij, Ternary Hopf Algebras, Symmetry in Nonlinear Mathematical Physics, Part 1, 2 (Kyiv, 2001), 439448; Pr. Inst. Mat. Nats. Akad. Nauk Ukr. Mat. Zastos. 43, Part 1, 2; Nat. Akad. Nauk Ukrani, Inst. Mat. Kiev, 2002.
9. M. Eshaghi Gordji and H. Khodaei, Solution and stability of generalized mixed type cubic, quadratic and additive functional equation in quasi-Banach spaces, Nonlinear Analysis.-TMA., 71, 5629-5643 (2009).
10. R. Farokhzad Rostami and S. A. R. Hosseinioun, Perturbations of Jordan higher derivations in Banach ternary algebras: An alternative fixed point approach, Int. J. Nonlinear Anal. Appl., 1, 42-53, 2010.
11. Z. Gajda, On stability of additive mappings, Internat., J. Math. Math. Sci., 14, 431-434, 1991.
12. P. G`avruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184, 431-436, 1994.
13. R. Haag, D. Kastler, An algebraic approach to quantum field theory, J. Math. Phys., 5, 848-861, 1964.
14. D. H. Hyers, G. Isac, Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhauser, Basel, 1998.
15. D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci., 27, 222-224, 1941.
16. D. H. Hyers and Th. M. Rassias, Approximate homomorphisms, Aequationes Math., 44,125-153, 1992.
17. G. Isac and Th. M. Rassias, On the Hyers-Ulam stability of ψ-additive mappings, J. Approx. Theory, 72, 131-137, 1993.
18. G. Isac, Th. M. Rassias, Stability of ψ-additive mappings: Applications to nonlinear analysis, Internat. J. Math. Math. Sci., 19, 219-228, 1996.
19. K. Jun, Y. Lee, A generalization of the Hyers-Ulam-Rassias stability of Jensens equation, J. Math. Anal. Appl., 238, 305-315, 1999.
20. S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Florida, 2001.
21. R.V. Kadison, J.R. Ringrose, Fundamentals of the Theory of Operator Algebras, Elementary Theory, Academic Press, New York, 1983.
22. M. Kapranov, I. M. Gelfand and A. Zelevinskii, Discriminants, Resultants and Multidimensional Determinants, Birkhuser, Berlin, 1994.
23. R. Kerner, The cubic chessboard: Geometry and physics, Class. Quantum Grav., 14, A203, 1997.
24. R. Kerner, Ternary Algebraic Structures and Their Applications in Physics (Pierre et Marie Curie University, Paris, 2000; Ternary algebraic structures and their applications in physics, Proc. BTLP, 23rd International Conference on Group Theoretical Methods in Physics, Dubna, Russia, 2000; http://arxiv.org/list/math-ph/0011.
25. H. Khodaei, Th. M. Rassias, Approximately generalized additive functions in several variables, Int. J. Nonlinear Anal. Appl., 1, 22-41, 2010.
26. C. Park, D.-H. Boo and J.-S. An, Homomorphisms between C^{*}-algebras and linear derivations on C^{*}-algebras, J. Math. Anal. Appl., 337, 2, 1415-1424, 2008.
27. C. Park, Y. Cho, M. Han, Stability of functional inequalities associated with Jordan-von Neumann type additive functional equations, J. Inequal. Appl., 2007 (41820), 1-12.
28. C. Park and Th. M. Rassias, On a generalized Trif's mapping in Banach modules over a C^{*}-algebra, J. Korean Math. Soc., 43, 2, 323-356, 2006.
29. Th. M. Rassias (Ed.), Functional Equations and Inequalities, Kluwer Academic, Dordrecht, 2000.
30. Th. M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Math. Appl., 62, 23-130, 2000.
31. Th. M. Rassias, On the stability of minimum points, Mathematica, 45(68), 1, 93-104, 2003.
32. Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer.Math. Soc., 72, 297-300, 1978.
33. L. A. Takhtajan, On foundation of the generalized Nambu mechanics, Commun. Math. Phys., 160, 295, 1994.
34. S. M. Ulam, Problems in Modern Mathematics, Chapter VI, science ed. Wiley, New York, 1940.
35. L. Vainerman and R. Kerner, On special classes of n-algebras, J. Math. Phys. 37, 2553, 1996.
36. H. Zettl, A characterization of ternary rings of operators, Adv. Math., 48, 117-143, 1983.
