NEW SUFFICIENT CONDITIONS FOR B-PREINVEXITY AND SOME EXTENSIONS

Vasile PREDA, Diana-Elena STANCIU

University of Bucharest, Romania E-mail: preda@fmi.unibuc.ro, stanciu diana79@yahoo.com

We give some sufficient conditions for B-preinvexity for locally Lipschitz functions defined on a invex set of a Banach space. Further, a general class of Lipschitz functions of B-preinvexity type is introduced for which some properties and results are given.

Key words: B-vex functions; B-preinvex functions; (B, ρ, d) -preinvex functions, Locally Lipschitz functions.

1. INTRODUCTION

The convexity and generalized convexity are very important in optimization. See for example [1–11, 15–17] and their references. Thus, the convexity was generalized to quasiconvexity, pseudoconvexity [11], invexity [5,7], F-convexity [14], (F,ρ) -convexity [15], B-vexity [1], preinvexity [8,17], B-preinvexity [16], and so on.

In the following we consider the case of locally Lipschitz functions of B-preinvexity type [10,4,12,13]. Thus, we give some general sufficient conditions for B-preinvexity and properties and results for a new class introduced in this paper, the class of locally Lipschitz (B, ρ, d) -preinvex functions. We extend many results of B-vexity type stated in literature, for example [1,2,9,10,16] and their references.

2. PRELIMINARIES

Let f be a locally Lipschitz real-valued function defined on a Banach space X. According to [4], the Clarke generalized directional derivative of f at a point $y \in X$ with respect to a direction d is

$$f^{0}(y;d) = \limsup_{\substack{x \to y \\ \lambda \downarrow 0}} \frac{f(x+\lambda d) - f(x)}{\lambda}.$$
 (1)

Thus, for any $y \in X$, the mapping $f^0(y;\cdot): X \to \mathbb{R}$ is finite, positively homogeneous and subadditive [4]. Also, the set

$$\partial f(y) = \left\{ \xi \in X^* : \left\langle \xi, d \right\rangle \le f^0(y; d), \forall d \in X \right\}$$
(2)

a subset of the topological dual X^* of X, is the Clarke generalized gradient of the mapping f at y. This set $\partial f(y)$ is nonempty, convex and weak compact, and further

$$f^{0}(y;d) = \max_{\xi \in \partial(y)} \langle \xi, d \rangle; \quad \forall d \in X.$$
 (3)

According to [4], a locally Lipschitz function f is regular at y if there exists the directional derivative $f'(y;\cdot)$ and $f^0(y;\cdot) = f'(y;\cdot)$, where

$$f'(y;d) = \lim_{\lambda \downarrow 0} \frac{f(y+\lambda d) - f(y)}{\lambda} \tag{4}$$

with $d \in X$.

3. SUFFICIENT CONDITIONS FOR B-PREINVEXITY

In this section, following the ideas of [10], we consider more general sufficient conditions for B-preinvexity locally Lipschitz function $f: D \to R$. Thus, some results are extended [1,10].

Theorem 1. Let h be a mapping from $D \times D$ into the set $(0,\infty) \subset R$. Also, consider the mappings $\rho_1: D \times D \to R$ and $\rho_2: D \times D \times D \to R$. Suppose that for every $x, y \in D$ and $\lambda \in [0,1]$:

$$(i_1) h(y,z) [f(y)-f(z)] \ge f^0(z;\eta(y,z)) + \rho_1(y,z);$$

$$(i_2) f^0(z;(1-\lambda)\eta(y,z)+\lambda\eta(x,z)) \ge \rho_2(x,y,z);$$

$$(i_3) \lambda \rho_1(y,z) + (1-\lambda)\rho_1(x,z) + \rho_2(x,y,z) \ge 0,$$

where $z = z(x, y, \lambda) = y + \lambda \eta(x, y)$. Then f is B-preinvex at y with respect to η and some b.

Proof. Since D is a η -invex set, we have $y + \lambda \eta(x, y) \in D$ for every $x \in D$ and $\lambda \in [0, 1]$. Using (i_1) we have

$$h(y,y+\lambda\eta(x,y))[f(y)-f(y+\lambda\eta(x,y))] \ge$$

$$\ge f^{0}(y+\lambda\eta(x,y);\eta(y,y+\lambda\eta(x,y)))+\rho_{1}(y,y+\lambda\eta(x,y)),$$
(5)

$$h(x,y+\lambda\eta(x,y))[f(x)-f(y+\lambda\eta(x,y))] \ge$$

$$\ge f^{0}(y+\lambda\eta(x,y);\eta(x,y+\lambda\eta(x,y)))+\rho_{1}(x,y+\lambda\eta(x,y)).$$
(6)

Multiplying these inequalities by $(1-\lambda)$ and λ , respectively, and then adding the obtained inequalities, we get

$$\lambda h(x,y+\lambda \eta(x,y)) \cdot f(x) + (1-\lambda)h(y,y+\lambda \eta(x,y)) \cdot f(y) -$$

$$-\left[\lambda h(x,y+\lambda \eta(x,y)) + (1-\lambda)h(y,y+\lambda \eta(x,y))\right] \cdot f(y+\lambda \eta(x,y)) \ge$$

$$\ge \lambda f^{0}\left(y+\lambda \eta(x,y); \eta(x,y+\lambda \eta(x,y))\right) + (1-\lambda)f^{0}\left(y+\lambda \eta(x,y); \eta(y,y+\lambda \eta(x,y))\right) +$$

$$+\lambda \rho_{1}\left(x,y+\lambda \eta(x,y)\right) + (1-\lambda)\rho_{1}\left(y,y+\lambda \eta(x,y)\right).$$

$$(7)$$

Using the convexity of the mapping $f^{0}(y + \lambda \eta(x, y); \cdot)$ in the second argument, we obtain

$$f^{0}\left(y+\lambda\eta(x,y);\lambda\eta(x,y+\lambda\eta(x,y))+(1-\lambda)\eta(y,y+\lambda\eta(x,y))\right) \leq \\ \leq \lambda f^{0}\left(y+\lambda\eta(x,y);\eta(x,y+\lambda\eta(x,y))\right)+(1-\lambda)f^{0}\left(y+\lambda\eta(x,y);\eta(y,y+\lambda\eta(x,y))\right). \tag{8}$$

Now, by (i_2) we have

$$\lambda f^{0}\left(y + \lambda \eta(x, y); \eta(x, y + \lambda \eta(x, y))\right) + (1 - \lambda) f^{0}\left(y + \lambda \eta(x, y); \eta(y, y + \lambda \eta(x, y))\right) \ge$$

$$\geq \rho_{2}\left(x, y, \eta(y, y + \lambda \eta(x, y))\right).$$

$$(9)$$

Hence.

$$\lambda h(x, y + \lambda \eta(x, y)) \cdot f(x) + (1 - \lambda) h(y, y + \lambda \eta(x, y)) \cdot f(y) -$$

$$- \left[\lambda h(x, y + \lambda \eta(x, y)) + (1 - \lambda) h(y, y + \lambda \eta(x, y))\right] \cdot f(y + \lambda \eta(x, y)) \ge$$

$$\ge \lambda \rho_1(x, y + \lambda \eta(x, y)) + (1 - \lambda) \rho_1(y, y + \lambda \eta(x, y)) +$$

$$+ \lambda \rho_1(x, y + \lambda \eta(x, y)) + \rho_2(x, y, \eta(y, y + \lambda \eta(x, y))).$$
(10)

From (i_3) and this inequality, we get as in [10] that

$$f(y+\lambda\eta(x,y)) \le b(x,y,\lambda) \cdot f(x) + (1-b(x,y,\lambda)) \cdot f(y), \tag{11}$$

with

$$b(x,y,\lambda) = \frac{\lambda h(x,y+\lambda \eta(x,y))}{(1-\lambda)h(y,y+\lambda \eta(x,y))+\lambda h(x,y+\lambda \eta(x,y))}$$
(12)

i.e., f is B-preinvex at y relative to η and b.

Since $f^0(z;d) = \max_{\xi \in \partial f(z)} \langle \xi, d \rangle$, $\forall d \in X$, we see that in this theorem conditions (i_1) and (i_2) are equivalent to

$$h(y,z)[f(y)-f(z)] \ge \langle \xi, \eta(y,z) \rangle + \rho_1(y,z), \ \forall y \in D, \ \xi \in \partial f(z), \tag{13}$$

and there exists $\overline{\xi} \in \partial f(z)$ with

$$\langle \overline{\xi}, \lambda \eta(x, z) + (1 - \lambda) \eta(y, z) \rangle \ge \rho_2(x, y, z), \ \forall x, y \in D,$$
 (14)

respectively.

Corollary 1. If in Theorem 1 we assume that $\rho_1 = 0$ and $\rho_2 = 0$ we obtain Theorem 4.1 of [10]. Also, using the above theorem we obtain a new criteria for B-preinvexity.

Theorem 2. Let h, f, ρ_1 and ρ_2 defined as in Theorem 1. Suppose that for every $x, y \in D$ and $\lambda \in [0,1]$,

$$(j_1) h(x,y) \lceil f(x) - f(y) \rceil \ge f''(y;\eta(x,y)) + \rho_1(x,y);$$

$$(j_2) f^0(x+\lambda\eta(y,x);\lambda\eta(y,x+\lambda\eta(y,x))+(1-\lambda)\eta(x,x+\lambda\eta(y,x))) \ge \rho_2(y,x,x+\lambda\eta(y,x));$$

$$(j_3) \lambda \rho_1(x, x + \lambda \eta(y, x)) + (1 - \lambda)\rho_1(y, x + \lambda \eta(y, x)) + \rho_2(y, x, x + \lambda \eta(y, x)) \ge 0.$$

Then f is a B-preinvex function on D with respect to η and some b.

Remark 1. Hypotheses (j_1) and (j_2) are equivalent to

$$h(x,y)[f(x)-f(y)] \ge \langle \xi, \eta(x,y) \rangle + \rho_1(x,y), \ \forall \xi \in \partial f(y), \ \forall x,y \in D$$
 (15)

and

$$\left\langle \overline{\xi}, \lambda \eta \left(y, x + \lambda \eta \left(y, x \right) \right) + (1 - \lambda) \eta \left(x, x + \lambda \eta \left(y, x \right) \right) \right\rangle \ge \rho_2 \left(x, y, x + \lambda \eta \left(y, x \right) \right), \quad \forall x, y \in D$$
(16)

for some $\overline{\xi} \in \partial f(x + \lambda \eta(y, x))$.

Remark 2. If $\rho_1 = \rho_2$, we get Theorem 4.2 from [10]. Further if $\eta(x, y) = x - y$, according to [10], (j_2) is satisfied and then we have a result of [9] for B-vex functions.

Theorem 3. Suppose that

$$(k_1) f(y + \eta(x,y)) \le f(x) + \rho_{01}(x,y), \forall x, y \in D;$$

$$(k_2) \langle \xi_1, \eta(x,y) \rangle h(x,y) - \langle \xi_2, \eta(x,y) \rangle h(y,x) \ge \rho_{02}(x,y), \quad \forall x,y \in D, \quad \lambda \in (0,1), \quad \xi_1 \in \partial f(y + \lambda \eta(x,y)), \quad \xi_2 \in \partial f(y);$$

$$(k_3) f^0 \Big(x + \lambda \eta(y, x); \lambda \eta(y, x) + (1 - \lambda) \eta(x, x + \lambda \eta(y, x)) \Big) \ge \rho_2 \Big(y, x, \eta(x, x + \lambda \eta(y, x)) \Big), \quad \forall x, y \in D \quad \text{and} \quad \lambda \in [0, 1];$$

$$(k_4)\lambda\rho_{01}(x,y)+(1-\lambda)\rho_{02}(y,x+\lambda\eta(y,x))+\rho_2(y,x,\eta(x,x+\lambda\eta(y,x)))\geq 0$$
, $\forall x,y\in D$ and $\lambda\in[0,1]$. Then f is a B -preinvex function on D with respect to η and some b .

Proof. According to the Lebourg's theorem, for $x, y \in D$ there exists $\theta \in (0,1)$ such that

$$f(y+\eta(x,y))-f(y) \in \langle \partial f(y+\theta\eta(x,y)), \eta(x,y) \rangle. \tag{16}$$

Hence there exists $\overline{\xi} \in \partial f(y + \theta \eta(x, y))$ such that

$$f(y+\eta(x,y))-f(y)=\langle \overline{\xi},\eta(x,y)\rangle$$
(18)

Now, by (k_1) we have

$$f(x) - f(y + \eta(x, y)) \ge \langle \overline{\xi}, \eta(x, y) \rangle + \rho_{01}(x, y).$$
(19)

Using this inequality, (k_2) and the assumption h > 0, we obtain

$$h(x,y)[f(x)-f(y)] \ge \langle \overline{\xi}, \eta(x,y) \rangle h(x,y) + \rho_{01}(x,y)h(x,y) \ge$$

$$\ge [\langle \xi_{2}, \eta(x,y) \rangle + \rho_{02}(x,y)]h(y,x) + \rho_{01}(x,y)h(z,y) =$$

$$= \langle \xi_{2}, \eta(x,y) \rangle h(y,x) + \rho_{01}(x,y)h(x,y) + \rho_{02}(x,y)h(y,x).$$
(20)

If we put $h_1(x,y) = \frac{h(x,y)}{h(y,x)} > 0$, we get

$$h_1(x,y) \lceil f(x) - f(y) \rceil \ge \langle \xi_2, \eta(x,y) \rangle + \rho_{01}(x,y) h_1(x,y) + \rho_{02}(x,y),$$
 (21)

for any $\xi_2 \in \partial f(y)$, i.e.,

$$h_1(x,y)[f(x)-f(y)] \ge f^0(y,\eta(x,y)) + \rho_1(x,y),$$
 (22)

where

$$\rho_1(x,y) = \rho_{01}(x,y)h_1(x,y) + \rho_{02}(x,y). \tag{23}$$

Now, we see that we can apply Theorem 2 with h_1 and ρ_1 defined as above.

Remark 3. In the case $\eta(x,y) + \eta(y,x) = 0$ or $\eta(x,y) = x - y$, the assumptions of the above theorems can be simplified.

4. (B,ρ,d)-PREINVEXITY

Now, we consider a more general class of B-preinvex functions type on a Banach space.

Let ρ be a real function on $D \times D$ and d a nonnegative real function on $D \times D$, where D is a invex set with respect to η .

Definition 1. We say that a real-valued function f defined on D is (B, ρ, d) -preinvex at $y \in D$ with respect to η if, for every $x \in D$ and $\lambda \in [0,1]$,

$$f(y+\lambda\eta(x,y)) \le b(x,y,\lambda)f(x) + + \left[1-b(x,y,\lambda)\right]f(y) + \rho(x,y)b(x,y,\lambda)\cdot \left(1-b(x,y,\lambda)\right)d(x,y,\lambda).$$
(24)

We say that f is (B, ρ, d) -preinvex on D with respect to η if it is (B, ρ, d) -preinvex at each $y \in D$ with respect to the same η .

Note that every (B, ρ, d) -preinvex function with respect to η is B-preinvex with respect to η with $\rho = 0$. If $\rho \ge 0$ on $D \times D$, then f is weakly B-preinvex on D and if $\rho \le 0$ on $D \times D$, then f is strong (or approximatively) B-preinvex on D.

Using the classical ideas for B-preinvexity [10, 1, 2] and (F,ρ) -convexity [15] we obtain some interesting properties for this new class of functions.

Let D, f, η , b, ρ and d be defined as above.

Theorem 4. Let f be a locally Lipschitz real-valued function on D, (B,ρ,d) -preinvex at $y \in D$. Also, assume that for each $x \in D$ and $\theta \in (0,1)$, the set-valued mapping $\lambda \to \partial f(y + \lambda \theta \eta(x,y))$, $\lambda \in [0,1]$, is upper semicontinuous. Then there exists $\bar{\xi} \in \partial f(y)$ such that, for any $x \in D$,

$$\overline{b}(x,y) \left[f(x) - f(y) \right] \ge \left\langle \overline{\xi}, \eta(x,y) \right\rangle - \rho(x,y) \overline{b}(x,y) d(x,y), \tag{25}$$

where $\bar{b}(x,y) = \limsup_{\lambda \downarrow 0} \lambda^{-1} b(x,y,\lambda)$.

Remark 4. If f is continuously differentiable on D, then the mapping $\lambda \to \nabla f(y + \lambda \theta \eta(x, y))$ is continuous and $\partial f(y) = {\nabla f(y)}$. Thus, the conclusion of Theorem 4 follows.

Remark 5. If $X = R^n$ and f is a locally Lipschitz real-valued function on D then, according to [4, Prop. 21.5], the set-valued mapping $\partial f(\cdot)$ is upper semicontinuous. Thus, the mapping $\lambda \to \partial f(y + \lambda \theta \eta(x, y))$ is a upper semicontinuous mapping, and then the conclusion of Theorem 4 is valid.

Theorem 5. Let f be a locally Lipschitz real-valued function on D, (B,ρ,d) -preinvex at $y \in D$. Further, assume that f is regular at y in Clarke's sense. Then, for every $\xi \in \partial f(y)$ and $x \in D$,

$$\underline{b}(x,y) \lceil f(x) - f(y) \rceil \ge \langle \xi, \eta(x,y) \rangle - \rho(x,y) \underline{b}(x,y) d(x,y)$$
 (25)

where $\underline{b}(x,y) = \liminf_{\lambda \downarrow 0} \lambda^{-1} b(x,y,\lambda)$.

Theorem 6. Let f be a locally Lipschitz real-valued function on D, (B,ρ,d) -preinvex on D. Also, suppose that for each $x,y\in D$ and $\theta\in (0,1)$ the set-valued mapping $\lambda\to \partial f\left(y+\lambda\theta\eta(x,y)\right)$, $\lambda\in [0,1]$, is upper semicontinuous. Then there exists $\overline{\xi_1}\in \partial f\left(x\right)$ and $\overline{\xi_2}\in \partial f\left(y\right)$ such that

$$\langle \overline{\xi_1}, \eta(y, x) \rangle \overline{b}(x, y) + \langle \overline{\xi_2}, \eta(x, y) \rangle \overline{b}(y, x) \le \lceil \rho(x, y) d(x, y) + \rho(y, x) d(y, x) \rceil \overline{b}(x, y) \overline{b}(y, x). \tag{27}$$

Remark 6. If in Theorem 6 we assume that f is also regular in Clarke's sense at x and y, then \bar{b} can be substituted by b.

Remark 7. As in Remarks 4 and 5, we can consider some special cases which will be omitted.

Remark 8. Relative to this new class of functions, we can establish some similar sufficient conditions for (B, ρ, d) -preinvexity.

REFERENCES

- 1. C. R. Bector and C. Singh, B-vex functions, J. Optim. Theor. Appl., 71, pp. 237–253, 1991.
- 2. C. R. Bector, S. K. Suneja and C. S. Lalitha, *Generalized B-vex functions and generalized B-vex programming*, J. Optim. Theor. Appl., **76**, pp. 561–576, 1993.
- 3. A. Ben-Israel and B. Mond, What is invexity?, J. Austral. Math. Soc., Series B, 28, 1, pp. 1–9, 1986.
- 4. F. H. Clarke, Nonsmooth analysis and optimization, John Wiley, New York, 1983.
- 5. B. D. Craven, Invex functions and constraint local minima, Bull. Austral. Math. Soc., 24, pp. 357–366, 1981.
- 6. R. R. Egudo, Efficiency and generalized convex duality for multiobjective programs, J. Math. Anal. Appl., 138, pp. 84–94, 1989.
- 7. M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl., 80, pp. 545–556, 1981.
- 8. M. A. Hanson and B. Mond, *Convex transformable programming problems and invexity*, J. Inform. Optimiz. Science, **8**, pp. 201–207, 1987.
- 9. X. F. Li, J. L. Dong and Q. H. Liu, *Lipschitz B-vex functions and nonsmooth programming*, J. Optim. Theor. Appl., **93**, pp. 557–574, 1997.
- 10. D. V. Lun and L. M. Tung, B-preinvexity criteria and applications, Indian Journal of Mathematics, 45, 3, pp. 279-300, 2003.
- 11. O. L. Mangasarian, Nonlinear programming, McGraw-Hill, New York, 1969.
- 12. R. Miculescu, *Some observations on generalized Lipschitz functions*, Rocky Mountain Journal of Mathematics, **37**, 3, pp. 893–903, 2007.
- 13. R. Miculescu, Approximations by Lipschitz functions generated by extensions, Real Analysis Exchange, 28, 1, pp. 33–41, 2002.
- 14. B. Mond and T. Weir, *Generalized concavity and duality*, in *Generalized concavity in Optimization and Economics* (S. Schaible and W. T. Ziemba, Eds.), pp. 263–279, Academic Press, San Diego, 1981.
- 15. V. Preda, On efficiency and duality for multiobjective programs, J. Math. Anal. Appl., 166, pp. 365–377, 1992.
- S. K. Suneja, C. Singh and C. R. Bector, Generalization of preinvex and B-vex functions, J. Optim. Theor. Appl., 76, pp. 577–587, 1993.
- 17. T. Weir and B. Mond, Preinvex functions in multiple objective optimization, J. Math. Anal. Appl., 136, pp. 29–38, 1988.

Received June 3, 2011