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We give some sufficient conditions for B-preinvexity for locally Lipschitz functions defined on a
invex set of a Banach space. Further, a general class of Lipschitz functions of B-preinvexity type is
introduced for which some properties and results are given.
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1. INTRODUCTION

The convexity and generalized convexity are very important in optimization. See for example [1-11,
15-17] and their references. Thus, the convexity was generalized to quasiconvexity, pseudoconvexity [11],

invexity [5,7], F-convexity [14], (F ,p) -convexity [15], B-vexity [1], preinvexity [8,17], B-preinvexity [16],

and so on.
In the following we consider the case of locally Lipschitz functions of B-preinvexity type [10,4,12,13].
Thus, we give some general sufficient conditions for B-preinvexity and properties and results for a new class

introduced in this paper, the class of locally Lipschitz (B,p,d ) -preinvex functions. We extend many results
of B-vexity type stated in literature, for example [1,2,9,10,16] and their references.

2. PRELIMINARIES

Let f be a locally Lipschitz real-valued function defined on a Banach space X . According to [4], the
Clarke generalized directional derivative of f ata point y € X with respect to a direction d is

/" (;d)=limsup f(HMi)_f(x) :

0

(1

Thus, for any y e X, the mapping f°(y;-): X — R is finite, positively homogeneous and subadditive
[4]. Also, the set
o (v)={eeX :(&.d)< ' (y:d).Vd e X] @

a subset of the topological dual X~ of X, is the Clarke generalized gradient of the mapping f at y. This

set of ( y) is nonempty, convex and weak compact, and further

fo(y;d)=§err}??(§)<&,d>; VdeX. 3)

According to [4], a locally Lipschitz function f is regular at y if there exists the directional derivative

f'(»+) and f°(y;-)=f"(3;), where
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f’(y;d)zlimf(erkd)_f(y)

Ao A

4)
with d e X .

3. SUFFICIENT CONDITIONS FOR B-PREINVEXITY

In this section, following the ideas of [10], we consider more general sufficient conditions for B-
preinvexity locally Lipschitz function f: D — R . Thus, some results are extended [1,10].

Theorem 1. Let h be a mapping from Dx D into the set (O,oo) C R. Also, consider the mappings
p,:DxD—R and p,:DxDxD — R . Suppose that for every x,y € D and ke[O,l]:

(i) h(y.2)[ S ()= f(2)]2 /" (zn(.2)) +p1 (3.2) 5

(iy) fo(z;(l—k)n(y,z)+7m(x,z))2pz(x,y,z);

(3) kpl(y,z)+(1—X)p1(x,z)+p2(x,y,z)20,
where z =Z(x,y,k) =y+7m(x,y) . Then f is B-preinvex at y with respect to N and some b.

Proof. Since D is a n-invex set, we have y+An(x,y)eD for every xe D and % €[0,1]. Using (i)

we have

h(y.y+an(x ) £ ()= f(y+an(xp)) ]2

> (v +an(xy)in (v +in(x,p)))+p (1.0 +An (%)), ©

h(x,y+7m(x,y))[f(x)—f(y+7m(x,y))]2 ©
> £0 (y+}m(x,y);n(x,y+7m(x,y)))+pl (x,y+7m(x,y)) )

Multiplying these inequalities by (l—k) and A, respectively, and then adding the obtained

inequalities, we get
Mh(x,y +20n(x,9))- f (x) + (1=2)h( v,y + 2 (x,2)) - /() -
—[M(x,y 4w () + (1=2)A( v,y + An(x,0)) |- £ (v +n(x.p)) 2
>0 (y+n(xp)m(xy+ 2 () + (1=2) £ (3 + 20 ()i (00 + 20 (x.p))) +
+1p, (x,y+An(x,p))+(1=2)p, (3.3 +An(x.y)).

(7

Using the convexity of the mapping f* ( yv+ kn X y ) in the second argument, we obtain

£y + ()i (xy+an(xp)) + (1= 2)n( 3, +An(x.p))) < ©
SXfo(y+ln(x,y);n(x,y+7m(x,y)))+(1 l)f (y+7m(x y) n(y,y+7m(x,y))).

Now, by (i, ) we have

A (y+an(xp)im(xy+an(xp))+ (1=2) £ (y+an(xp)m(p.r +n(x.p))) 2

)
>p, (x,m(3.+An(x.))).

Hence,
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kh(x,y+7m(x,y))-f(x)+(l—l)h(y,y+7m(x,y))'f(y)—
—[Mz(x,y-k?m(x y)) (1 X) (y y+7»n(x y))]f(y+7m(x,y))2
2y (2.9 + 2 (x,9)) + (1=2)py (3.3 + An(x. ) + (10)

)+p, (x.0.m(3,+4n(x.2))).

\_/\_/

+7»p1(x y+in(x,y
From (7,) and this inequality, we get as in [10] that
f(y+7m(x,y))Sb(x,y,k)-f(x)+(l—b(x,y,7»))-f(y) , (11)
with
kh(x,y+7m(x,y))
(1 —l)h(y,y +7m(x,y)) + Mz(x,y + M](x,y))

i.e., f is B-preinvex at y relative to n and b.
Since f° (z;d)zémﬁ)()(&,,d}, Vd e X, we see that in this theorem conditions (i) and (i,) are

b(x,y,1)= (12)

equivalent to
W(v.2)[ f(v)=7(2)]2(en(r2)) +pi(v.2), VyeD, tedf (z), (13)

and there exists Ee of (Z) with

<E,7m(x,z)+(l—7n)n(y,z)> 2p, (x,y,z) , Vx,yeD, (14)

respectively.
Corollary 1. If in Theorem 1 we assume that p, =0 and p, =0 we obtain Theorem 4.1 of [10].

Also, using the above theorem we obtain a new criteria for B-preinvexity.
Theorem 2. Let h, [, p, and p, defined as in Theorem 1. Suppose that for every x,y €D and

rel0,1],
) h(xy)[ £ (x)=F(0)]2 0 (ym(y))+p(x.y):
(/,) fo(x+7»n(y,x);7m(y,x+M](y,x))+(l—k)n(x,x+kn(y,x)))2pz(y,x,x+7m(y,x));

(j3) Ap, (x,x-l— M”l(y,x))Jr(l—k)p1 (y,x+7m(y,x))+ P, (y,x,x+7m(y,x))2 0.
Then f is a B-preinvex function on D with respect to N and some b .

Remark 1. Hypotheses ( j,) and ( j, ) are equivalent to

h(x,y)[f(x)—f(y)}Z<Z;,n(x,y)>+p1(x,y), V&eaf(y), Vx,yeD (15)

and
<g,7w|(y,x+7m(y,x))+(l k)n(x x+7m(y, ))> P, (x y,x+7m(y, )), Vx,yeD (16)

for some & 8f(x + kn(y,x)) .
Remark 2. 1f p, =p,, we get Theorem 4.2 from [10]. Further if n(x,y)=x—y, according to [10], ( ,)

is satisfied and then we have a result of [9] for B-vex functions.
Theorem 3. Suppose that

(kl)f(y+n(x,y))3f(x)+Pm(XJ): Vx,yeD;
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(k2)<§1,n(x,y)>h(x,y)—<§2,n(x,y)>h(y,x)Zpoz(x,y), vx,yeD, 7\,6(0,1), ilec’?f(er?m(x,y)),
&, e ();
(k3)fo(x+kn(y,x);?m(y,x)Jr(l—k)n(x,er?m(y,x)))sz(y,x,n(x,erkn(y,x))), Vx,yeD and
rel0,1];
(ky) Apy, (x,y)+(1—7u)p02 (y,x+7n‘|(y,x))+p2 (y,x,n(x,x+kn(y,x)))20, Vx,ye D and %6[0,1].
Then f is a B-preinvex function on D with respect to N and some b .

Proof. According to the Lebourg’s theorem, for x,y € D there exists 0 (O,l) such that

S(yn(or)-f(v)e(@r (v+0m(xp))n(x.p)). (16)
Hence there exists &< df (y+0n(x,»)) such that
fyen(xp)-£()=(En(xy)) (18)
Now, by (k) we have
£(x)= £ (vm(x2)) 2 (En(x62))+por (3.0). (19)

Using this inequality, (%, ) and the assumption / > 0, we obtain

W) f ()= £ (9)]2 (& () (x,0) + Py (5, 9) (%, 7) >

>[ (& (x2))+pus (3:9) |h(%) + oy (5. 0) (2, 0) = (20)
= (&M 2))h(3,%) +pgy (,2) A (x,3) + pos (x,3) A (,%) .
If we put A, (x,y) = ZE;’,Q >0, we get
b (x3)[ £ (%)= £ (3) ]2 (€ (x.2)) +Por (%) 1y (x,) + poa (%.3). 21
forany &, € ﬁf(y), ie.,
h(x ) f(x)-F() ]2 £ (vn(xy))+p (x.), 22)
where
P (%:2) = Poy (%) 1y (%, ) + g (%, ) - (23)

Now, we see that we can apply Theorem 2 with /4, and p, defined as above.
Remark 3. In the case n(x,y)+n(»,x)=0 or n(x,y)=x-y, the assumptions of the above theorems
can be simplified.

4. (B,p,d)-PREINVEXITY

Now, we consider a more general class of B-preinvex functions type on a Banach space.
Let p be a real function on Dx D and d a nonnegative real function on Dx D, where D is a invex

set with respect to 1.
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Definition 1. We say that a real-valued function f defined on D is (B,p,d ) -preinvex at y € D with
respect to m if, for every xe D and A e [O,l] ,

f(y+7m(x,y))Sb(x,y,?»)f(x)+

+[1—b(x,y,k)]f(y)+p(x,y)b(x,y,k)-(l—b(x,y,k))d(x,y,k). 4)

We say that [ is (B,p,d)-preinvex on D with respect to m if it is (B,p,d ) -preinvex at each ye D
with respect to the same 1.

Note that every (B,p,d)-preinvex function with respect to m is B-preinvex with respect to 1 with
p=0.1f p>0 on Dx D, then f is weakly B-preinvex on D and if p<0 on Dx D, then f is strong (or
approximatively) B-preinvex on D.

Using the classical ideas for B-preinvexity [10, 1, 2] and (F,p)-convexity [15] we obtain some

interesting properties for this new class of functions.
Let D, f,n, b, p and d be defined as above.

Theorem 4. Let f be a locally Lipschitz real-valued function on D, (B,p,d)-preinvex at y € D . Also,
assume that for each xe D and 6¢ (O,l), the set-valued mapping A — 6f(y+7»6n(x,y)) , A€ [O,l] , IS

upper semicontinuous. Then there exists E eof ( y) such that, for any xe D,

E(X,Y)[f(x) _f(y):| 2 <E:n(x:y)>_ P(an’)[;(an’)d(xay) 5 (25)
where E(x,y) = limsupk_lb(x,y,k) .
Ao
Remark 4. If f is continuously differentiable on D, then the mapping A — Vf ( y+k6n(x, y)) is

continuous and 9f (y) = {Vf ( y)} . Thus, the conclusion of Theorem 4 follows.

Remark 5. If X =R" and f is a locally Lipschitz real-valued function on D then, according to [4,
Prop. 21.5], the set-valued mapping of () is upper semicontinuous. Thus, the mapping
A—of ( y+A0n (x, y)) is a upper semicontinuous mapping, and then the conclusion of Theorem 4 is valid.

Theorem 5. Let f be a locally Lipschitz real-valued function on D, (B,p,d)-preinvex at yeD.
Further, assume that f is regular at y in Clarke’s sense. Then, for every & e of ( y) and xe D,

Q(xay)[f(x)_f(y):l 2 <§an(X,J’)>_P(X,J’)Q(xa)/')d(xa)’) (25)
where lz(x,y) = liriliionf N‘b(x,y,k) .
Theorem 6. Let f be a locally Lipschitz real-valued function on D, (B,p,d)-preinvex on D . Also,
suppose that for each x,ye D and 0¢ (O,l) the set-valued mapping \ — 6f(y + ken(x,y)) , A€ [0,1] T

upper semicontinuous. Then there exists é';_l edf (x) and ﬁ_z edf ( y) such that

(8n(2))b(x.3) + (& m(x.2))b(r.x)<[p(x.3)d (x.7) +p(v.x)d (v.x) o (x.3)b (%) @7)

Remark 6. If in Theorem 6 we assume that f is also regular in Clarke’s sense at x and y, then b can
be substituted by b.

Remark 7. As in Remarks 4 and 5, we can consider some special cases which will be omitted.
Remark 8. Relative to this new class of functions, we can establish some similar sufficient conditions
for (B,p,d)-preinvexity.
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