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The dynamical path for cluster decay is determined in the frame of the macroscopic-microscopic 
model for the 24Ne emission from 232U. The inertia is computed in the cranking approximation. A 
nuclear shape parametrization characterized by five degrees of freedom is used. The single particle 
energies and the nucleon wave functions are obtained within the superasymmetric Woods-Saxon two 
center shell model. It is evidenced that the cluster decay follows a potential valley that begins from 
the ground state of the parent and reach a configuration of two touching nuclei at scission. A 
comparison within cold fission is realized. 
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1. INTRODUCTION 

The cluster decay was predicted in the 80 [1–6] and experimentally evidenced in 1984 [7,10]. Since 
that time, the spontaneous emission of heavy fragments was investigated intensively. A phenomenological 
unified approach of cluster radioactivity, cold fission and alpha decay as well as many body theories were 
used. Few time later, a fine structure in cluster emission was also anticipated. An elaborated study of the 
fission dynamics in a wide range of mass asymmetries could help us to understand better the underlying 
physics. In this work, our aim is to develop the macroscopic-microscopic approach to treat in a unitary 
manner the cluster decay and the fission process. For this purpose a fission like theory will be used to 
determine the best action trajectory of the cluster decay in a configuration space spanned by five degrees of 
freedom: elongation, necking, mass-asymmetry and deformation of fragments. In this context, the minimal 
action principle will be used. Two ingredients are needed: the deformation energy of the disintegrating 
system and the nuclear inertia. Such trajectories were previously obtained for the fission of Th [11,12], 
U [13–17], Np [18] and Cf [19,20]. The potential barrier obtained for cluster emission will be discussed in 
correlation with that of the fission process.  

2. MODEL 

The calculation addresses the 24Ne cluster emission from of 232U. The microscopic-macroscopic model 
[21] is exploited dynamically, by determining the least action trajectory. The dynamical analysis of a 
fissioning nucleus requires at least the knowledge of the deformation energy and the effective mass. For 
simplicity, it is considered that these quantities depend upon the shape coordinates. So, in our analysis, the 
basic ingredient is the nuclear shape parametrization. The nuclear shape parametrization used in the 
following is given by two ellipsoids of different sizes smoothly joined by a third surface obtained by the 
rotation of a circle around the axis of symmetry. Five degrees of freedom characterize this nuclear shape 
parametrization, that are: the elongation given by the inter-nuclear distance R = z2–z1 between the centers of 
the ellipsoids, the two deformations of the nascent fragments denoted by the eccentricities εi =[1–(bi/ai)2]1/2 
(i = 1,2),  the mass asymmetry obtained within the ratio of major semi-axis as η = a2/a1 and the necking 
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parameter related to the curvature of the intermediate surface C = s/R3. The quantity C is used for swollen 
shapes in the median region while R3 is used for necked shapes. The meaning of the geometric symbols can 
be understood by inspecting the Fig. 1. The determination of the fission trajectory can be obtained through a 
minimization of the action integral [22] in our five-dimensional configuration space, beginning with the 
ground state of the system and ending in the exit point of the barrier.  

 

 
Fig. 1 – Nuclear shape parametrization. 

The probability P of the fission process is determined by an exponential factor in the WKB approximation.  
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The exponent of the previous relation gives the classical action integral of a fixed energy along a trajectory 
in our multidimensional configuration space. Our aim is to determine the path for cluster decay. In the 
present work, this energy is considered as the ground state energy of the parent nucleus. The trajectory 
connects the ground state configuration Ri to the exit point of the barrier Rf. For this purpose, two ingredients 
are required: the deformation energy V and the tensor of the effective mass B. 
 The deformation energy V was obtained by summing the liquid drop energy ELDM with the shell and the 
pairing corrections δE: 

.LDMV E E= + δ  (2)

 The macroscopic energy ELDM is obtained in the framework of the Yukawa – plus-exponential model 
[23] extended for binary systems with different charge densities [24] as detailed in Ref. [25]: 
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is the nuclear term, and 
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is the Coulomb energy, and EV is the volume energy. In the previous definitions ρe  are charge densities and 
r12 = |r1–r2|. Another degree of freedom must be introduced here, namely the charge asymmetry. It is 
considered that ρe is charge density of the parent nucleus for an elongation smaller than 0.7xRt, where Rt is 
the elongation that characterizes the configuration of two touching fragments, and varies linearly up to the 
final values of the two nascent nuclei at scission.  
 The shell effects δE are obtained as a sum between the shell δU and the pairing δP microscopic 
corrections. In this context, the Strutinsky procedure [22] was used.  These corrections represent the varying 
parts of the total binding energy caused by the shell structure. The single particle level diagrams are 
computed within the Woods-Saxon superasymmetric two-center shell model [26]. In calculating the pair 
corrections, the blocking effects are taken into account. 

The deformation energy is a function of the collective parameters and gives the generalized forces that 
act on the nuclear shape. For a complete description of the fission process, it is therefore required to know 
how the nucleus reacts to these generalized forces. This information is contained in the effective mass of the 
system [22]. The most used approach to calculate the inertia is the cranking model. Recently, the cranking 
model was generalized by taking into account the intrinsic excitation produced during the fission process 
itself [27]. Along the minimal action path for the 232U fission, the mass parameters are evaluated 
microscopically with the cranking model. 
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where ν and µ denote the single particle wave functions, Eν, uν and vν are the quasiparticle energy, the 
vacancy and occupation amplitudes of the state ν, respectively, in the BCS approximation, and Pij is a 
correction that depends on the variation of the pairing gap ∆ and the Fermi energy λ as function of the 
deformation coordinates qi. This correction amount up to 10% of the total value of the inertia. The inertia B 
along a trajectory in the configuration space  spanned by the generalized coordinates qi (i = 1,n) can be 
obtained within the formula 
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Results concerning the inertia concerning the fission process can be found in [28,29]. To calculate the inertia, 
we need a microscopic potential. The microscopic potential must be constructed to be consistent within our 
nuclear shape parametrization. The simplest way it to use a semi-phenomenological Woods-Saxon potential. 
In order to take into account nuclear deformations going over to separate shapes and obtain two separated 
fragments, a two-center shell model with a Woods-Saxon potential was developed recently [26]. The mean 
field potential is defined in the frame of the Woods-Saxon model: 
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where ∆(ρ,z) represents the distance between a point (ρ,z) and the nuclear surface. This distance is measured 
only along the normal direction on the surface and it is negative if the point is located in the interior of the 
nucleus. Vc is the depth of the potential while a is the diffuseness parameter. In our work, the depth is 
Vc=V0c[1±κ (N0–Z0)/(N0+Z0)] with plus sign for protons and minus sign for neutrons, V0c= 51 MeV, a = 0.67 
fm, κ = 0.67.  Here A0, N0 and Z0 represent the mass number, the neutron number and the charge number of 
the parent, respectively. This parametrization, referred as the Blomqvist-Walhlborn one, is adopted because 
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it provides the same radius constant r0 for the mean field and the pairing field. That ensures a consistency of 
the shapes of the two fields at hyperdeformations, i.e., two tangent ellipsoids. The Hamiltonian is obtained 
by adding the spin-orbit and the Coulomb terms to the Woods-Saxon potential. The eigenvalues are obtained 
by diagonalization of the Hamiltonian in the semi-symmetric harmonic two center basis [30, 31]. In this 
work, the major quantum number used is Nmax=12. The two center Woods-Saxon model will be used to 
compute shell and pairing corrections together with inertia in this work. The two center shell model 
represents a valuable instrument to investigate the role of individual orbitals for the treatment of a wide 
variety of superasymmetric disintegration processes, pertaining to cluster- and alpha-decays [32–34] or 
superheavy elements [35, 36]. 

b)  b)  
Fig. 2 – a) Potential energy surface V as function 
of the elongation R and the mass asymmetry η;  

b) contour plot of the potential energy surface. The step  
between two equipotential lines is 1 MeV. The variations of the 
coordinates ε1, ε2, and C follow the least action path as function 
of R. The least action trajectory is plotted within a thick curve. 

Fig. 3 – Same as Fig. 1 for a representation  
in the C and R generalized coordinates.  

For C greater that 0.2 fm–1 the left scale for R3=1/C apply. 

3. RESULTS AND DISCUSSION 

It is not possible to minimize the functional (1) directly due to the time required to compute the values 
of the potential energies and of the effective masses. So, in the relevant configuration space, a small number 
of potential energies and inertia are computed and their interpolated values are used in the numerical 
minimization program. First of all, a grid of 576 000 deformation values was fixed in our five-dimensional 
configuration space: 20 values of R between 0 fm and 20 fm, 8 values of the eccentricities εi between 0 and 
0.75, 15 values of the ratio η = a1/a2 in the interval 1 and 3 and 25 values for C between –0.115 fm–1 and 
0.115 fm1 (5 values for R3 between 0 and 5 fm are also added). The deformation energy and the elements of 
the inertia tensor were computed in these selected points. In this way, the pertinent region in the 
configuration space that includes the possible fission trajectories between the ground state and the exit point 
from the barrier was spanned. A first minimal action trajectory was obtained in this selected region by 
interpolating the calculated masses and the energies within a method initiated in Ref. [22] and used 
extensively to describe the fission process. The trajectory of the decaying system is obtained simultaneously 
as a function of the five generalized coordinates. This trajectory emerges by minimizing numerically the 
action functional K that defines the quantum penetrability exp(–2K/ħ) in the semi-classical Wentzel-
Kramers-Brillouin approximation. The two turning points Ri and Rf denote the elongation that characterize 

a) a)
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the first well and the exit point of the barrier, respectively. The functions C = f(R), εi= f(R) and η = f(R) are  
approximated with a spline functions of n variables Cj, εij and ηj in fixed mesh points Rj comprised in the 
interval [Ri, Rf]. A numerical function for the WKB functional that depends only on the the parameters Cj , εij 
and ηj is obtained. This expression is minimized numerically for different input parameters. Different local 
minima are obtained. The best values are retained. After this first minimization, a new array of deformation 
values and inertia parameters is calculated in the identified region of the second barrier. A new minimization 
is made, by varying only the necking collective parameter. The remaining generalized coordinates are kept 
unchanged.  

The results are plotted in Fig. 2 and Fig. 3. In Fig. 2 the potential energy surface is represented as 
function of the mass asymmetry parameter η and the elongation R. The ground state of the parent is located 
at an elongation R = 4.6 fm and at a mass asymmetry η = 1, that is the nuclear shape is reflection symmetric. 
The mass asymmetry is changed abruptly when the nucleus begins to deform, i.e., when the elongation is 
increased. It is clearly evidenced that the nuclear system follows a well behaved valley in the potential 
energy surface up to the scission configuration. This scission configuration is approximated by two tangent 
spherical fragments (208Pb and 24Ne), This scission configuration is located at an elongation R close to 10 fm. 
It is interesting to note that in the case of the fission phenomena, the situation is very different. Information 
about the fission can be obtained if the mass asymmetry is kept at a value close to 1 where two fragments of 
comparable sized are formed. It can be seen on the upper plot of Fig. 2 that a double barrier is formed. The 
nucleus initially in the ground state disintegrates in fission by penetrating a first barrier located at R = 6.5 fm 
and reaches a second well at R = 7 fm. The situation is completely different for cluster decay: the system 
follows an energy valley in the deformation energy. 

As displayed in Fig. 3, the parent ground state is located at R = 4.6 fm while the necking parameter 
C = 0.075 fm–1. So, the ground state is characterized by a swollen shape in the median region. These swollen 
shapes are preserved up to R = 6 fm. From this value, the necking parameter starts to vary abruptly and the 
shapes become very necked producing a rupture at R ≈ 10 fm. At scission, the configuration of nearly two 
touching nuclei is obtained. 

In this paper, the cluster decay was treated within fission models. The drifting potential in the overlap 
region was obtained in conjunction with the minimal action principle. It was shown that the cluster decay 
follows a well behaved valley in the potential energy landscape. This behavior is very different from the well 
known double humped fission barrier. The model presented in this work represents an alternative description 
for cluster decay. Usually, the cluster decay is treated by calculating a preformation probability, as in alpha 
decay [37]. 
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