
      THE PUBLISHING HOUSE  PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A, 
      OF THE ROMANIAN ACADEMY  Volume 12, Number 3/2011, pp. 221–229 

ANALYTIC SOLUTIONS FOR AXISYMMETRIC INCOMPRESSIBLE FLOWS 
WITH WALL INJECTION AND REGRESSION 

Corneliu BERBENTE, Sterian DĂNĂILĂ, Sorin BERBENTE 

Department of Aerospace Sciences, “Politehnica” University Bucharest  
Splaiul Independenţei 313, 060042, Bucharest, Romania 

E-mail: berbente@yahoo.com 

One gives analytical solutions for axisymmetric flows, considering wall injection and regression. 
Except a narrow region near wall, the potential flow or some particular rotational flows are possible 
solutions for this outer flow. The wall regression causes unsteady effects. The analytical solutions are 
found as linear combinations of eigenfunctions for steady and unsteady outer flow. For laminar 
viscous flow the partial differential Navier-Stokes equations are reduced to an ordinary differential 
equation solved numerically. 
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1. INTRODUCTION 

The possibility to obtain simpler solutions for incompressible flow with injection was, after our 
knowledge, not thoroughly studied. Several papers [1,2] take into account a vortex solution generated by the 
injection itself, although the superposition of eigenfunctions does not satisfy the nonlinear vortex equation of 
Helmholtz [4]. Of course much attention is paid to wall injection in connection with boundary layer control 
[5,6] as well as in connection with modern rocket engines. An important domain of application is the flow in 
rocket motors [1–3,8,9]. The injection and regression are caused by solid fuel consumption. 

In order to find analytical solutions for the partial differential system of equations of the axi-symmetric 
flow with fluid injection and wall regression in a channel, a step by step strategy is adopted: 1) first one 
solves the nonviscid stationary (no regression) flow with constant injection a closed analytical solution being 
obtained; 2) then one solves the problem of variable injection velocity, adding to a solution of  type 1) for the 
average velocity a series in eigenfunctions, an approach that becomes possible with this authors strategy; 
3) the unsteady problem is solved for constant regression speed but variable injection; analytical expressions 
are obtained too; 4) the steady viscous flow is solved in a closed form for laminar regime. Finally numerical 
results are given and commented. 

2. MODEL FORMULATION  

One considers an incompressible flow trough a cylindrical channel of inner diameter a and length L An 
injection of same fluid takes place trough the wall at a speed wu . The wall can have a regression at the 
constant speed  ru  the radius varying with time, t . One uses bars for dimensional variables; bars will be 
dropped for the corresponding dimensionless magnitudes.  

The governing system of equations for incompressible flow, in vectorial form, are the continuity 
equation, 0∇ =V  and the momentum equation: 

0∇ =V ;
   

2
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2
V p

t
 ∂
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V VV ,   const.ρ = , (1)
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where V ( zv , rv , vϕ ) is the velocity vector, p  is the static pressure, ρ  is the density and ν  the cinematic 

viscosity, ∇ ⋅  stands for the vectorial differential operator and ω  is the vorticity:ω=∇×V . If one uses 
cylindrical coordinates ( z , r , ϕ ), for axi-symmetrical flow, one has 0vϕ = , 2 2 2

z rV v v= + , ϕω = ωe , ϕe  
being the unit vector of the ϕ  coordinate. 
 By introducing the stream function ( , , )z rψ ϕ defined by: 

1
zv

r r
∂ψ

=
∂

,   1
rv

r z
∂ψ

= −
∂

, (2)

the continuity equation is identically satisfied and the vorticity ω  has the expression: 

( )
r
ω

ψ = −L ,   
2

2 2

1 . 1 1 ..
r z r r r r

∂ ∂ ∂ = +  ∂ ∂ ∂ 
L ,   r zv v

z r
∂ ∂

ω = −
∂ ∂

, (3)

 Applying the curl operator to the momentum equation – the second equation (1) – the pressure is 
eliminated, to yield the equation for the vorticity transport: 

( ) ( ) ( ) ( )2( ) ( ) ( ) ( )z rv v r
t z r
∂ ∂ ∂

ψ + ψ + ψ = ν ψ
∂ ∂ ∂

L L L L L . (4)

which represents the Helmholtz equation written in a convenient form by authors. 
 The equation (4) should be solved for the following boundary conditions: 

0z = , 0(0, , ) ( , )z zv r t v r t= , (5)

r a= , ( , , ) ( , )r wv z a t u z t= − , 0zv = , (6)

0r = , 0 z L≤ ≤ , ( ,0, ) 0rv z t = , (7)

where 0 ( , )zv r t  and ( , )wu z t  are given quantities.  

2.1. Dimensionless quantities 

One defines dimensionless coordinates z , r and t by simply dropping bars from the dimensional ones: 
z Lz= , 0r a r= , 0 / reft ta U= , refU = const.being a reference velocity. In particular, it can be the entrance or 
exit velocity on the axis or an average velocity conveniently selected.  The flow dimensionless quantities are 

zv , rv , p and ψ  defined as follows z ref zv U v= , r ref rv U v= , 2
0 refa Uψ = ψ , 2

refp U p= ρ , 0/refU aω= ω . 
The equations (2), (3) and (4) become, in dimensionless form: 

1
zv

r r
∂ψ

=
∂

, 01
r

av
r L z

∂ψ
= −

∂
, ( )

r
ω

− = ψL , (8)

( ) ( ) ( ) ( )21( ) ( ) ( ) ( )
Rez rv v r

t z r
∂ ∂ ∂

ψ + ψ + ψ = ψ
∂ ∂ ∂

L L L L L , (9)

0Re /refa U= ν   being the reference Reynolds number and ⋅L  the dimensionless operator: 

2 2
0
2 2 2

1 1 1a
L r z r r r r

∂ ⋅ ∂ ∂ ⋅ ⋅ +  ∂ ∂ ∂ 
L = . (10)

3. INVISCID STEADY SOLUTIONS 

The equation (9) has a particular solution ( ) Cψ =L , C being an arbitrary constant. For 0C =  one 
obtains a potential flow: 0ω= . 
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3.1. An exact steady solution for constant injection velocity 

For wu = const. and C = const one has the particular solution:  

( )
2

4
0 12 8p

r Cz rψ = α + α + . (11)

The velocity components result as bellow: 

2
0 1

1( , )
2zp
Cv z r z r

r r
∂ψ

= = α + α +
∂

, 0 0
1

1( , )
2

p
rp

a arv z r
r L z L

∂ψ
= − = − α

∂
. (12)

Considering a constant injection velocity wu = const. from the second equation (12) and the boundary 

condition (6) yield
 

1
0

2 w
L u
a

α = ,   2
0

0

( , ) 2
2zp w

L Cv z r u z r
a

= α + + and rp wv ru= − . The relation between the 

constants 0α  , C  and the mean entrance velocity 0avv  is: 

1
2

0 0 0
0

2 d
2 4av
C Cv r r r   = α + = α +   

   ∫ . (13)

 Two of quantities 0avv , 0α  or C  should be specified. It turns out that a vorticity r Cω= −  can be 
introduced at the entrance for 0 0avvα ≠ . In particular, for 0wu =  (no injection) and for 02C = − α one obtains 
a Poiseuille – like flow: 

2 4

0 2 4p
r r 

ψ = α − 
 

, 2
0 (1 )zpv r= α − , 0rpv = , (14)

Because in this case the fluid is assumed to be inviscid, the pressure losses are due the vortex. 

3.2. Extension of potential solution for variable injection velocity 

In order to solve the equation ( ) Cψ =L  for variable injection velocity one uses the method of 
separation of variables. First, one introduces the stream function 1( , )z rψ , defined by: 

1pψ = ψ +ψ , ( )p Cψ =L , 1( ) 0ψ =L , (15)

where pψ  is given by (11), where wu  is replaced by the average injection velocity wavu : 
1

0

0

( )dwav w
au u z z
L

= ∫ . (16)

Obviously, the new unknown, 1ψ , satisfies the equation 1( ) 0ψ =L . The boundary conditions for this 
equation are: 

0z = , 0 1r< ≤ ,   11 0
r r
∂ψ

=
∂

, 0r = , 0 1z< < ,    11 0
r z
∂ψ

=
∂

, (17)

1r = ,   0 1z< < ,   ( )11
wav wu u

r z
∂ψ

− = − −
∂

,   1z = ,   0 1r< < ,   11 0
r r
∂ψ

=
∂

. (18)

Taking: 
1( , ) ( ) ( )z r Z z R rψ = , (19)

introducing in 1( ) 0ψ =L  and separating variables, one obtains: 
2

20 d
d

a Z r R
L Z R r r

′′ ′    = − = −λ        
, (20)
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λ  being an arbitrary real constant. From the above relation, one obtains two ordinary differential equations. 
The general solution of the equation in the variable z is: 

1 2
0 0

( ) cos sinL LZ z A z A z
a a

   
= λ + λ   

   
, (21)

where 1A and 2A  are constants. For the equation in the variable r one yields the solution: 

1 1 2 1( ) ( ( ) ( ))R r r B I r B K r= λ + λ , (22)

where 1I  and 1K  are the modified Bessel functions, 1B  and 2B  being constants. Because  10
lim ( )
r

K r
→

= ∞ , 

one takes 2 0B = . Imposing the entrance condition (17) one gives 1 0A =  and relations (17) yield: 

 1
0

( , ) ( , ) sin ( )p
Lz r z r Ar z I r
a

 
ψ = ψ + λ λ 

 
, (23)

A  being a constant. Taking the advantage that introducing the mean injection velocity wavu  all the flow rate 
at the exit ( 1z = ) is taken over by the velocity component zpv  one obtains an equation in eigenvalues, 

( )0sin / 0L aλ =  , wherefrom
 

0/nL a nλ = π , 1,2,...n = .Therefore, a solution of the  equation ( ) Cψ =L  and 
obviously a solution of the general equation (9) is: 

1
1

( , ) ( , ) ( )sin( )p n n n
n

z r z r A rI r z
∞

=

ψ = ψ + λ Λ∑ , 0
n

a n
L
π

λ = ,
0

n n
L n
a

Λ = λ = π , (24)

2
0 0 0 0

10

( , ) 2 2( ) ( )sin( )z wav av n n n n
n

Lv z r u z v r A I r z
a

∞

=

= α + + −α + λ λ Λ∑ , (25)

1
1

( , ) ( )cos( )r wav n n n
n

v z r ru A rI r z
∞

=

= − − λ Λ∑ . 
(26)

The coefficients nA  are determined from the injection condition ( ,1) ( )r wv z u z= − leading to the equation: 

1
1

( )cos( )n n n w wav
n

A rI r z u u
∞

=

λ Λ = −∑ ;   
1

1
0

1 1 ( ) ( 1)cos( )d
2 n n n w n

wav

A I z z
u

λ λ = β − Λ∫ ,    w
w

wav

u
u

β = , (27)

where the property of orthogonal trigonometric functions cos( )n zΛ was applied. In Table 1 the coefficients 

nA are given for four cases of injection (column 2).  

Table 1 

 Series coefficients  nA and ( )t
nA for steady and unsteady flows 

Steady Unsteady, regression rate const.ru =  

wβ  
1

1 ( )n n n
wav

A I
u

λ λ  ( )1
1 (1 )

(1 ) n n n r
wav r

A I u t
u u t

λ λ +
+

 

1 0 0 

2z  2

4 1 ( 1)n

n

 − − − Λ
 

2

4 1 ( 1)n

n

 − − − Λ
 

2(1 )z−  2

4 1 ( 1)n

n

 − − Λ
 

2

4 1 ( 1)n

n

 − − Λ
 

23 (1 )
2

z−  
2

6 ( 1)n

n

− −
Λ

 
2

6 ( 1)n

n

− −
Λ

 



5 Analytic solutions for axisymmetric incompressible flows with wall injection and regression  225

4. UNSTEADY INVISCID FLOW DUE TO THE WALL REGRESSION  

One considers a regressing wall with constant velocity (due, for example, to the wall consumption), 
such that the distance a is: 

0 (1 )ra a u t= + , const.r
r

ref

uu
U

= = , 1ru << . (28)

First, one introduces a new variable, 1r , defined by: 1 / (1 )rr r u t= + ,
 

[ ]1 0,1r ∈ , the advantage being  
constant limits for 1r . Then the operator L  is denoted by 1L  in the new variables: 

1

2 2

1 4 2 2 2
1 1 1 1 1( , ) ( , )

1 1 1 1
(1 )r r t z t

a
u t L r z r r r r

  ∂ ⋅ ∂ ∂ ⋅ ⋅ = +  + ∂ ∂ ∂   
L . (29)

If we denote the stream function for unsteady case by ( )
1( , , ) ( , , )t z r t z r tψ ≡ ϕ , the equation (9) with zv , rv  

defined by (8) becomes: 

( ) ( ) ( ) ( )2 201
1 1 1 1 1 1

1

1( ) ( ) ( ) (1 ) ( ) .
1 Rez r

r

ar v r u t
t u t r L z
∂ ∂ ∂

ϕ − ϕ + ϕ = + ϕ
∂ + ∂ ∂

L L L L L  (30)

4.1. Wall regression for constant injection velocity 

In this particular case, one looks for a solution pϕ , satisfying the equation 1( ) const.p Cϕ = =L  The 
equation (29) for non viscous flow (Re→∞ ) is then satisfied. In comparison with the steady case (the 
second equation (15)), we have only to replace 0a  by a  and C by ( )tC  given by 

( ) 4(1 )t
rC C u t= + . 

Therefore, one obtains, in coordinates ( 1, ,z r t ): 
2 ( )

( ) ( ) 41
1 0 1 1( , , ) ( )

2 8

t
t t

p
r Cz r t z rϕ = α + α + ,     or     

2 ( ) ( )
( ) 40 1

2

( ) .
2(1 ) 8

t t
t

p
r

r z C r
u t

α + α
ψ = +

+
 (31)

Thus the rotational term remains unmodified, but r  has a time variable boundary. The velocities, in case of 
.wu const= , are: 

( ) ( )
( ) 20 1

2(1 ) 2

t t
t

zp
r

z Cv r
u t

α + α
= +

+
, 

( )
( ) 0 1

2 .
2 (1 )

t
t

rp
r

arv
L u t

α
= −

+
 (32)

The boundary condition ( )t
rp wv u= − ,  for 1 rr u t= + , yields: 

( )
1

0

2 (1 )t
w r

L u u t
a

α = + , ( )

1
t w

rp
r

u rv
u t

= −
+

,
( )

( ) 20
2

0

2 .
(1 ) 1 2

t
t

zp w
r r

L z Cv u r
u t a u t
α

= + +
+ +

 (33)

The mean entrance velocity ( )
0
t
avv  is: 

1 ( )
( ) ( ) 0
0 2

0

2 d
(1 ) 4

t
t t
av z

r

Cv v r r
u t

α
= = +

+∫ , (34)

two of quantities ( )
0
t
avv , ( )

0
tα  and C being given.  

4.2. Unsteady flow with constant wall regression due to the variable injection 

As for steady flow, we consider first the injection solution for average injection velocity, wavu , to use 
results of &3.1. Then one looks for a function ( )

1 ( , , )t z r tψ  such that the general solution is the sum: 
( ) ( ) ( )

1( , , ) ( , , ) ( , , )t t t
pz r t z r t z r tψ = ψ +ψ .  So one obtains ( )

1( ) 0tψ =L . 
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 For convenience, one introduces  the function 1 1( , )z r tϕ ,  as ( )
1 1( , , ) ( , , )t z r t z r tψ = ϕ  that should satisfy 

the equation (29), for 1ϕ = ϕ . If 1ϕ  fulfils the equation 1 1( ) 0ϕ =L , one refinds the equation 1( ) 0ψ =L  with 

1r  and a  instead of r  and 0a . Therefore the  solution has the form (24): 

( ) ( ) ( ) ( )
1 1 1

1
( )sin( )t t t t

p n n n
n

A r I r z
∞

=

ψ = ψ + λ Λ∑ , n nΛ = π , ( ) 0 (1 )t r
n n

a u t
L
+

λ = Λ . 
            (35)

Written  in the initial variables, the function ( )tψ is: 
( )

( ) ( )
1

1
( )sin( )

1

t
t t n

p n n
n r

A rI r z
u t

∞

=

ψ = ψ + λ Λ
+∑ , (36)

nλ , nΛ  being the same quantities as for the steady case.  
 Finally, besides division by (1 )ru t+ , the solution coefficients ( )t

nA  contain 0 ( (1 ))n rI u tλ +  (Table 1, 
column 3). The velocities are: 

( )
( ) ( )

0
1

( )sin( )
1

t
t t n

z zp n n n
n r

Av v I r z
u t

∞

=

= + λ λ Λ
+∑ , 

( )
( ) ( )

1
1

( )cos( )
1

t
t t n

r rp n n n
n r

Av v I r z
u t

∞

=

= + λ λ Λ
+∑  (37)

( ) 20
2

0

2
(1 ) 1 2

t
zp wav

r r

L z Cv u r
u t a u t
α

= + +
+ +

,
 

( )

1
t wav

rp
r

u rv
u t

= −
+

,
 

( ) 0
0 2 .

(1 ) 4
t
av

r

Cv
u t
α

= +
+

 (38)

Here n nΛ = π  and 0
n n

a
L

λ = Λ . In (36), (38) given are two of the parameters 0α , C, ( )
0
t
avv , the last one 

representing the average velocity at entrance ( 0z = ). ( )t
nA are given in Table 1. 

5. VISCOUS SOLUTION FOR STEADY FLOW WITH 
CONSTANT INJECTION VELOCITY  

By comparison with the flow in a long pipe ( 0/ 1L a >> ) where more information is available [1,2,9], 
one expects different solutions for laminar and turbulent regimes. We consider here the laminar case only. 

5.1. The uniform steady injection in laminar flow 

We assume as before a long channel ( / 1L a >> ) in order to neglect the ends effects. The equation to 
be solved is (9) with / 0t∂ ∂ = (steady flow). 

One looks for a solution of the form: 

( ) ( )0 1z xψ = α + α Φ , 2 / 2,x r≡   (39)

( ) ( )0 1zv z x′= α + α Φ , 0 0zavvα = , 1
0

2 ,w
L u
a

α = 2 / ( )r wv u x x= − Φ , (40)

where a new variable 2 / 2x r=  is introduced for convenience. By using the expressions (39), (40) the 
equation for steady flow becomes: 

( )Re 2 2 IV
w x′ ′′ ′′′ ′′′Φ Φ − ΦΦ = Φ + Φ , 0Re / /ww wu a u= ν = ν ( )0 1 0zα + α ≠ , (41)

the upper scripts indicating derivatives with respect to x. The equation (41) is a nonlinear ordinary 
differential equation of the fourth order. It will be integrated numerically with a Runge-Kutta method [7]. 

Remark. The multiplication by x of the highest order derivative in (41) introduces a difficulty in the 
numerical calculation at 0x =  (axis). However, the axis can be approached as much as necessary. 
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5.2. The boundary conditions 

The choice of a particular form (41) of the solution implies a certain form of the boundary conditions. 
It is understood that at entrance ( 0z = ) and at the exit ( 1z = ), conditions are to be satisfied in connection 
with the expressions (41). These are then related to the conditions required for solving the differential 
equation (41), i.e. for the function ( )xΦ . These boundary conditions are: 

     1r = , 1 / 2x = , ( )1/ 2 0′Φ = , ( ),1 0zv z = , 1r = , 1 / 2x = , ( ),1r wv z u= − , ( )1 / 2 1/ 2Φ = , (42)

0r = , 0x = , 0zv
r

∂
=

∂
, 0zv

x
∂

=
∂

, ( )0 0′′Φ = , 0r = , 0x = , 0rv = , ( )0 0Φ = . (43)

The second derivative ( )x′′Φ  is important for calculation of the shear stress.  

5.3. The method of solving  

The solution of the differential equation (41) is searched in general, numerically, by using a fourth 
order Runge-Kutta method for an equivalent system of four differential equations. This is a boundary value 
problem with two parameters, as the four boundary conditions are equally shared between wall 
( 1, 1 / 2r x= = ) and axis ( 0, 0r x= = ). 

One can verify that even for Rew = 0, a singular term lnx x  exists; it can be however removed in the 
limit 0x →+ . In the numerical calculation, we shall construct the solution from two parts: 

a) in an interval [ ] [ ] 2, 1 , , 1 / 2 , / 2 1r r x rε ε∈ ∈ ε ε = << , one solves numerically the equation (41) for 
the boundary conditions (42), and for conditions near the axes that make connection with an inviscid solution 

( )inv x xΦ =β , β  being a coupling constant. The conditions are: 

r rε= ,
 

2 / 2x rε= ε = ,
 ( )aΦ ε = βε , r rε= ,

 
2 / 2x rε= ε = , ( )0 1zv x= β α + α , ( )a′Φ ε = β , (44)

,r rε= 2 / 2 ,x rε= ε =
 

0 ,zv
r

∂
=

∂
0 ,zv

x
∂

=
∂  ( ) 0a′′Φ ε = . (45)

b) in the interval [ ] [ ]0, , 0,r r xε∈ ∈ ε  the solution is ( ) 0a′′Φ ε = , [ ]0,x∈ ε , 0; 2r  ∈ ε  .             

5.4. Numerical results 

One takes a small value for ε, 410−ε = , 210 2r −
ε =  and one solves the differential equation for the five 

conditions (42) and (44). The corresponding five unknowns are the four arbitrary constants of the fourth 
order differential equation (41) and the coupling constant β. 
 The results are given in Table 2 for five Reynolds numbers Rew, including the Poiseuille flow (Rew = 0) 
for comparison. As one can see, there is a natural variation of the parameters with Rew.  

Table 2 

 Results for laminar flow 

Rew ( )′′β = Φ ε  ( )1 / 2′′Φ  ( )′′′Φ ε  ( )rε′′′ϕ  

0; ε = 0 2.0000 –4.0000 0.0000 0.0000 
0; ε = 10–4 1.9970 –4.0003 –42138.0 -0.08428 

1.0 1.9080 –4.2507 –33910.0 -0.06748 
10.0 1.6880 –4.8063 –13214.0 -0.02650 
100.0 1.5850 –4.9309 –2142.0 –4.282 310−⋅  

1000.0 1.5743 –4.9402 –342.0 –6.840 410−⋅  
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Fig. 1 – Radial velocity function  
of injection Reynolds number. 

 
Fig. 2 – Axial  velocity function  
of injection Reynolds number.  

In Figures 1, 2 the variations of the dimensionless velocities are given. The examples of calculations 
suggest not only qualitative but as well a reasonable order of magnitude for velocities[1;2].For example, the 
injection Reynolds numbers, Rew , are of the order 2 310 10− . The proposed method holds even for larger 
values.The increase of  the axial velocity depends mainly on injection, in  agreemen with our formulas. 

 
 

6. CONCLUSIONS 
 

The given solutions are important and useful both for theory and applications. From theoretical point 
of view, finding analytical solutions for variable injection speed, with possibility to include rotational effects 
in case of the non viscid flow and to reduce the system of partial differential Navier-Stokes equations for 
viscous flow to only one ordinary differential equation (41) gives an attractive useful model of calculation. 
One remarks the compactness of the proposed model based on a unique equation (9) able to yield a variety of 
solutions. As regards the applications, these are related, for example, to flow in rocket motors either solid or 
hybrid. A lot of experiments are done  at present and  simple effective methods of estimation of the possible 
interval of parameter variations are still looked for [1,2,3,8,9] ; a simple velocity field is useful for further 
estimations as the heat transfer. The incompressibility assumption is justified by the small Mach numbers 
reported experimentally [1,8,9]; anyhow a constant density solution is useful. The regression (do to the solid 
fuel consumption) is small (1–5 mm/sec according to [9]) Also, the used interval of Reynolds numbers 
makes the laminar solution interesting. Further analysis not presented here from space reasons proves that 
the proposed method permits extensions to turbulent regimes. 
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