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Continuing recent works of the authors, the paper shows the developing and the application of a 
neuro-fuzzy control law to the positioning loop of a hydrostatic type servoactuator. Experimental 
results are presented concerning dynamical behavior of the system by using this “intelligent” 
controller. Finally, arguments about the advantages of the new designed controller are summarized. 
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1. INTRODUCTION 

It is well known [1–8] that the pump controlled system keeps on the servovalve controlled ones [9–12] 
the advantages of a better linearity, stability and efficiency due to the eliminating of throttle losses at the 
valve. And, first of all, the pump controlled system avoids the requirement of a large central system with a 
reservoir. Thus, the pump controlled actuation is in fact a cost and weight effective actuation.  

This work describes exprimental tests performed on the positioning Hydrostatic ServoActuator (HSA) 
[6] having implemented a switching neuro-fuzzy control law with antisaturating logic. The organization of 
the work is as follow. In Section 2, the HSA physical and mathematical models and the control synthesis are 
shortly described. The Section 3 describes the experimental set up and presents experimental results on the 
system, underlining its dynamical performance essentially represented by the time constant. Section 4 is 
devoted to summarize some conclusions concerning the advantages of the intelligent controllers versus the 
classical ones. 

2. MATHEMATICAL MODELING AND NEURO-FUZZY CONTROL SYNTHESIS 

Consider the architecture of a pump controlled HSA physical model given in Fig. 1.  

Fig. 1 − Architecture of the pump controlled HSA physical model. 

The primary component of the HSA is a double cylinder with simple action supplied with hydraulic oil 
by a fixed displacement, bidirectional gear pump. The transmission of the fluid power is obtained by very 
stiffly coupling the pump to the hydraulic cylinder, thus the electrohydraulic servovalve is not required. 
The pump is driven by an AC electric motor. The system is of closed type, so there is no direct contact 
between the oil and air. The electric motor has as analog input a speed reference signal from the range of ± 5V. 
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The rod position is controlled by varying the speed of the electric motor. The mathematical model of the 
HSA system is the following [4–8] 
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The system includes a LuGre model of dry friction fF  [8]. 
The state variables are: zx ≡1 – load displacement [m]; 2x  –  load velocity [m/s]; 3x − state value 

concerning internal friction [m]; 4x −  pressure in cylinder chamber one [Pa]; 5x −  pressure in cylinder 
chamber two [Pa]; 6: xω = − pump and motor shaft speed [rad/s]; fF – internal friction force due the tight 

sealing [N]; r  –  reference input (command) [m]; u [V] − control variable. The parameters: 20kgm =  – 
total mass of the piston and the load referred to piston; 410 Ns/mf =  – load viscous damping coefficient; 
k = 1 190 000 N/m – load spring gradient; 4 22 10 mS  −= ×  – piston area;  0.1ml  =  – half of piston stroke; 

7 3
1 2

3.95 10 mD DV V V −= = = ×  – dead volumes of the hydraulic lines; 7 31.6925 10 m /radpD −= ×  – pump 

displacement; 86 10 PaB  = × – bulk modulus of the oil; 5207 10 Paap = ×  – nominal pressure; 55 10 Parp  = × – 
minimal pressure of the hydraulic system; ( )28.37 rad/ sVmk =  − motor gain; τ − motor time constant [s]; 

sτ − servoactuator time constant [s]; K −  controller gain [V/m]; Cec = 1.9 ×10–13 m3/(Pa×s) – external 

leakage coefficient; Cip = 2 ×10–13 m3/(Pa×s) – internal leakage coefficient; 4
0 2 10 N/mσ  −= × stiffness 

coefficient; 2
1 3 10 Ns/mσ  −= × damping coefficient; 60Ns/mvf  −= viscous friction coefficient; 

0.1m/ssv  −= Stribeck velocity; 100NcF  −= Coulomb friction; 120NsF  −= static friction. 
Artificial intelligence based approach in the treatment of control problems concerns in principle an 

input-output behavioral philosophy of solution. In fact, herein the mathematical model (1) will serve only as 
illustration of applying this strategy. In the case of experiment, the mathematical model is naturally 
substituted by the physical system. 

 
 
 
 
 
 
 
 
 
 
 
The neuro-fuzzy control strategy adopted for the position control of the system is composed of two 

components: a neuro-control and a fuzzy logic control supervising the neuro-control to counteract the 
saturation. As neuro-control, a unilayered perceptron is used (Fig. 2) 
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Fig. 2 − Percepton type neurocompensator. 
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Fig. 3 − Singleton membership function. 
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1 1 2 2 1 2: : ( )nu u y y r z zν ν ν ν= = + = − + , (2)

where ( )tr  is reference input (command) and 1: xz = . From the system behavior view point, the input is nu  
and the output is ( )21, yy=y . From neuro-control training viewpoint, the system performance is assessed by 
the cost function, a criterion supposing a trade-off between the first input 1y − tracking error, the second 
input component 2y  and the control u 
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1 1 2 2
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= + + =∑ ∑ .   (3)

The weighting vector T
1 2[ ]ν ν  ν=  is updated online by the gradient descent learning method to reduce the 

cost J. Consequently, the update is given by the expression 
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where the matrix 1 2diag( , )δ δ  introduces the learning scale vector, )(nν∆  is the weight vector update and N 
marks a back memory (of N time steps). The derivatives in (4) require only input-output information about 
the system. )(/)( iui ∂∂y  is online approximated by the relationship  

( ( ) ( 1)) /( ( ) ( 1))i i u i u i− − − −y y . (5)
 

 
To counteract the risk of neuro-control saturation and achieve the goal of reinforcement learning 

system, a Fuzzy Supervised Neuro-control (FSNC) was proposed in [11]. FSNC switches to a Mamdani type 
fuzzy logic control when the just described neuro-control saturated. 

Further on, the three standard components of the fuzzy control: fuzzyfier, fuzzy reasoning, and 
defuzzyfier, will be succinctly exemplified. The used fuzzyfier component converts the crisp input signals  

( ) 2
2 1 1 1 2

2

: , , , 1, 2, ...
k

k j k k
j k

l y y y y k
= −

= =∑  (6)

into their relevant fuzzy variables (or, equivalently, membership functions) using the following set of 
linguistic terms: zero (ZE), positive or negative small (PS, NS), positive or negative medium (PM, NM), 
positive or negative big (PB, NB) (for the sake of simplicity, triangular and singleton type membership 
functions are chosen, see Figs. 3, 4). l2 is a norm which computes, over a sliding window with a length of 
3 samples, the maximum variation of the tracking error. The insertion of this crisp signal in the fuzzyfier will 
result in a reduction of fuzzy control switches due to the effects of spurious noise signals.  

The strategy of fuzzy reasoning construction embodies herein the idea of a (direct) proportion between 
the error signal y1 and the required fuzzy control uf. Thus, the fuzzy reasoning engine totals a number of 
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Fig. 4 − Membership functions for: a)  scaled input variables y1, y2 and b) l2(y1) . 
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n = 4×7×7 IF..., THEN... rules, that is the number of the elements of the Cartesian product A×B×C, 
A := {ZE; PS; PM; PB}, B = C := {NB; NM; NS; ZE; PS; PM; PB}. These sets are associated with the sets of 
linguistic terms chosen to define the membership functions for the fuzzy variables ( )12 yl , y1 and, respectively, 

2y . Consequently, the succession of the n rules is the following: 1) IF l2 (y1) is ZE and y2 is PB and y1 is PB, 
THEN uf is PB; 2) IF l2 (y1) is ZE and y2 is PB and y1 is PM, THEN uf is PM; …7) IF l2 (y1) is ZE and y2 is 
PB and y1 is NB, THEN uf is NB;8) IF l2 (y1) is ZE and y2 is PM and y1 is PB, THEN uf is PB; …196) IF l2 
(y1) is PB and y2 is NB and y1 is NB, THEN uf is NB. 

Let T  be the discrete sampling time. Consider the three scaled input crisp variables l2 (y1k),  y1k and y2k, 
at each time step kt kT=  (k = 1, 2,...). Taking into account the two ordinates corresponding in Figs. 3, 4 to 
each of the three crisp variables, a number of  M ≤ 23 combinations of three ordinates must be investigated. 
Having in mind these combinations, a number of M IF..., THEN... rules will operate in the form  

IF is and is and ( ) is , THEN is , 1,2,...,21 2 1y B y C l y A u D i Mi i i ik k k fk =  (7) 

(Ai,Bi,Ci,Di are linguistic terms belonging to the sets A, B, C, D and D = B = C, see Figs. 3, 4). The 
defuzzyfier concerns just the transforming of these rules into a mathematical formula giving the output 
control variable uf. In terms of fuzzy logic, each rule of (10) defines a fuzzy set Ai×Bi×Ci×Di in the input-
output Cartesian product space R+×R3, whose membership function can be defined in the manner 

1 2 2 1min ( ), ( ), ( ( )), ( ) , 1, ... , ( 1, 2, ...)B k C k A k Di i i iy y l y u i M kuiµ µ µ µ µ  = = =   . (8)

For simplicity, the singleton-type membership function µD(u) of control variable has been preferred; in this 
case, µ Di

u( )  will be replaced by ui
0 , the singleton abscissa. Therefore, using 1) the singleton fuzzyfier for 

uf, 2) the center-average type defuzzyfier, and 3) the min inference, the M  IF..., THEN… rules can be 
transformed, at each time step kτ, into a formula giving the crisp control u f [13] 

∑ ∑
= =
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M

i

M

i
uiuf ii
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1 1

0 /  (9)

The FSNC operates as fuzzy logic control fu  in the case when neuro-control nu saturated, or so called 
l2 – norm of tracking error 1y  increased. In the case of fuzzy control operating, the fuzzy neuro-control nu  is 
concomitantly updated in the context of the real acting fuzzy control fu . To obtain the rigor and accuracy of 
regulated process tracking, fuzzy logic control switches on neuro-control whenever readjusted neuro-control 

nu is not saturated and scaled norm l2(y1) is smaller than a chosen value l2,min. At time st , when the switching 
from fuzzy logic control to neuro-control occurs, the readjusted weighting vector νr will be derived by 
considering a scale factor nf uu [14] 

( ) ( )1r f 2 2 f n 1 2r 2 f n,u y u u y u uν ν  ν ν= − = . (10)

The aforementioned control was brought to the proof in numerical simulations reported in [4–6]. In 
accordance with simulation studies, in [5] it is proved that: a) the nonconventional neurofuzzy control, as 
compared with a proportional control, improves the transients of SHA dynamics, mainly in the case of 
sinusoidal references: thus, a better tracking, meaning smaller attenuation and dephasage, are achieved; 
b) the neurofuzzy control is proved to ensure a more robust control of SHA than the classical proportional 
control. Moreover, as it can be seen in next Section, the theoretical basic performance parameter, the time 
constant, is very close to the experimental one. 

3. EXPERIMENTAL RESULTS 

To test the proposed neuro-fuzzy control strategy and study fundamental problems associated with the 
control of hydrostatic HSA systems, the cylinder doublet – each part having simple action – is supplied with 
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hydraulic oil by a fixed displacement, bidirectional Haldex Hydraulics HX G2204C1A300N00 gear pump. 
The transmission of the fluid power is obtained by very stiffly coupling the pump to the hydraulic cylinder. 
The pump is driven by an AC Anaheim BLW235S–36V–4000 electric motor. A planetary gearbox with 3:1 
gear ratio is a part of electric motor. The main data of the pump: pump displacement – 1.07 cm3/rot; nominal 
pressure – 207 bar; pump (and motor shaft) maximal speed (rad/s) – 3 600 rpm; maximal flow – 3.86 l/min. 
The main data of the electric motor: peak torque – 1.3 Nm; rated power – 180 W; rated speed 4 000 rpm; 
mass – 1.4 kg; peak current – 22.5 A; rated voltage – 36 V; control maximal voltage – ± 5 V. A view of the 
motor-pump-hydraulic cylinder components of the system on the test rig is shown in Fig. 6. 

 
Fig. 6 – View of the test rig for the hydrostatic actuator. 

 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 7 − Electrical connection diagram. 
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The experimental set up is presented in Fig. 7. The switches labeled L1 and L2 are used to stop the 
electrical motor at a stroke about than half of maximum stroke of the piston, as a measure of safety. The 
switch with positions labeled LIM (limited) and FREE is used to enable this protection on the LIM position. 
The other switch is used to select the motor command, MAN (manually) or AUT (automatically). 

Conclusive experimental recordings are presented in Figs. 8, 9, which show time responses to 
sinusoidal combination, respectively, step references. Implementation of neuro-fuzzy algorithm described in 
Section 2 was performed using LabView programming language. The initial values of weighting vector ν  
has proven to have a certain, but not decisive importance. As it can be seen from Fig. 9, a value of the actual 
servoactuator time constant 0.0824 ssτ  =  is obtained. This value is confirmed by a theoretical evaluation. 
Indeed, let us consider the paradigmatic structure of the control (compare with (2)) 

( )u K r z= − .  (11)

A reduced mathematical model derived from (1) is 

4 5

4 6 4 5 6 6

, : ,

, , .p p m

mz fz kz Sp p x x
V Vx D x Sz x D x Sz x x k u
B B

+ + =  = −

= −   = − + τ + =
  (12)
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Fig. 8 − Experimental recording, neuro-fuzzy control, sinusoidal signals combination reference.  

Time histories for reference r , position z  and control u  variables (left) and weighting vector ν (right). 
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Fig. 9 − Experimental recording: neuro-fuzzy control, step reference signal. The result: actual servoactuator time constant 

sτ = .0824 s (delay ignored!). Time histories for reference r , position z  and control u  variables (left) and b) zoom on left figure. 

From (11)–(12), the transfer function r z→  can be written as 
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( )
2

3 2 2 221 p m p mSBD k K SBD k KS Bs ms fs k s z r
V V V

τ
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. (13)

The system can be expressed as an order one system in the manner 

( )0 1 0a s a z b r+ = , (14)

so we have the time constant 
2

2
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2
2

2 2s
p m p m

k S B
a kV S BV

SBD k Ka SBD k K
V

τ

+
+

= = =  (15)

or, taking into account the value 0k ≅  in experiment, 

s
p m

S
D k K

τ ≅ .  (15′)

To determine motor speed-control voltage gain mk , the measurement shown in Fig. 10 was performed, with 
1V control voltage in loaded regime; the found time constant is 0.265 sτ  = . Based on the equation 

6 6 mx x k uτ + = , we have 

1 0
0

300 00.265 , 0.265 0 ,
0.0978m mk k

t
θ θ

θ   
∆
− −

+ = + =   ( )85.12 rad / sVmk =   

but a speed reduction factor 1/ 3 from motor to pump is involved, thus 

( ) ( )85.12 / 3rad / sV 28.37 rad / s/Vmk = = . 
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Fig. 10 – Measuring motor time constant τ  and angular speed-control voltage gain mk  

 in loaded regime, 1 V control input. 

Substituting in (15′) the cylinder-pump-motor main data and the controller gain K  

4 22 10 mS −= × , 7 31.7 10 m / radpD −= × , ( )28.37 rad/ sVmk =  , V450
m

K =   

gives 0.09 ssτ ≅  that is a value close to the experimental value 0.0824 ssτ  ≅ . The size of controller gain K  
is in fact provided as the value of 1ν  weight in Fig. 8, where 2ν  is relatively negligible. 
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5. CONCLUSIONS 

The studies and experimental results in the literature show that the neuro-fuzzy control not only 
extends the system bandwidth, but also provides excellent control performance [10–12, 14],  as compared 
with various classical control strategies in hydraulic servo position systems [15–19]. 

Considering previous researches of the authors [11,14], the main conclusion of the paper concerns the 
remarkable fact that neuro-fuzzy control algorithm ensured well dynamical behavior of the hydrostatic 
servoactuator. Let note the most meaningful feature of this proposed controller: because is in fact a free 
model strategy, this methodology ensures a reduced design complexity and provides antisaturating and 
antichattering properties of the controlling system [9], thus favourising its robustness.  
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